# Grammatical Factors in Morphological Processing Evidence from Allomorphy

#### Daniil Bondarenko, Onur Özsoy, Itamar Kastner

Humboldt-Universität zu Berlin 30. November 2019



< ∃ >

ъ













Daniil Bondarenko, Onur Özsoy, Itamar Kastner Grammatical Factors in Morphological Processing

(日)

→ Ξ →

Э

SQC

Morphemes can have variants depending on distinct environments:

Phonologically conditioned (rule-based)

cats~dogs~buses
(/ts/~/gz/~/səz/)

**B b** 

SQA

Morphemes can have variants depending on distinct environments:

| Phonologically conditioned<br>(rule-based) | Syntactically conditioned (suppletive) |
|--------------------------------------------|----------------------------------------|
| cats~dogs~buses                            | <i>go~went~gone</i>                    |
| (/ts/~/gz/~/səz/)                          | present, past, past.part               |

AP ► < 3

MQ (P

Morphemes can have variants depending on distinct environments:

| Phonologically conditioned<br>(rule-based) | Syntactically conditioned (suppletive) |
|--------------------------------------------|----------------------------------------|
| cats~dogs~buses                            | <i>go~went~gone</i>                    |
| (/ts/~/gz/~/səz/)                          | present, past, past.part               |

 $Q_1$ : Are the different kinds processed differently?

- 4 同 ト 4 ヨト 4 ヨト

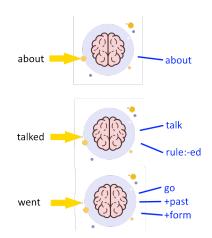
Morphemes can have variants depending on distinct environments:

| Phonologically conditioned<br>(rule-based) | Syntactically conditioned (suppletive) |
|--------------------------------------------|----------------------------------------|
| cats~dogs~buses                            | <i>go~went~gone</i>                    |
| (/ts/~/gz/~/səz/)                          | present, past, past.part               |

- $Q_1$ : Are the different kinds processed differently?
- $Q_2$ : Does allomorphy impact processing in the first place?

- 4 同 1 4 日 1 4 日 1




- Allomorphy is unrelated to meaning and lexical categories (Nevins 2011) it is a purely grammatical factor.
- Grammatical factors have been shown to impact lexical processing (Fruchter et al. 2013, but see Hay and Baayen 2005).

#### Hypothesis

Sensitivity to levels of allomorphic complexity impacts processing time along the cline *none*<*rule*<*suppletion*.

< ロト < 同ト < ヨト < ヨト

#### Hypothesis



(日)

Э

3

## Methods: Allomorphy

We introduced three predictors reflecting allomorphic complexity:

|                                      | beat  | beaten | beating | beats | dog  | dogs | about |
|--------------------------------------|-------|--------|---------|-------|------|------|-------|
| ParHas                               | suppl | suppl  | suppl   | suppl | rule | rule | none  |
| HasAllos                             | suppl | none   | none    | none  | rule | none | none  |
| IsAllo                               | suppl | suppl  | none    | rule  | none | rule | none  |
| Table: Examples of Allomorphy Coding |       |        |         |       |      |      |       |

- Items were coded across lexical categories.
- Each item was assigned its highest level of complexity.
- Predictors were then contrast-coded for use in the models.

イロト イボト イヨト イヨト

MQ (P

#### Methods: Corpus Data

We simulated an experiment via stepwise linear mixed-effects regression modelling with the following design:

- British Lexicon Project dataset (Keuleers et al. 2012);
- 804,633 observations across 37 participants;
- RTs and Accuracy as dependent variables;
- standard predictors (see below);
- allomorphy predictors across different models.

- 4 同 1 4 日 1 4 日 1

#### Findings: Paradigm-by-Paradigm

| Predictor                                          | Estimate | SE     | р       |
|----------------------------------------------------|----------|--------|---------|
| (Intercept)                                        | 0.2482   | 0.0069 | <0.001  |
| Lemma Frequency                                    | -0.0945  | 0.0005 | < 0.001 |
| Orthographic Length                                | 0.0731   | 0.0003 | < 0.001 |
| Orthographic Similarity                            | -0.0004  | 0.0001 | < 0.001 |
| Inflectional Entropy                               | -0.0079  | 0.0001 | < 0.001 |
| ParHas - <i>allo</i> VS <i>none</i>                | 0.0654   |        | < 0.001 |
| ParHas - <i>suppl</i> VS <i>rule</i>               | 0.0929   |        | < 0.001 |
| ParHas - ( <i>allo</i> VS <i>none</i> )*LemmaFreq  |          | 0.0004 | < 0.001 |
| ParHas - ( <i>suppl</i> VS <i>rule</i> )*LemmaFreq | -0.0135  |        | < 0.001 |

Table: Regression Results for Paradigms (normalized RT)

• Directionalities of standard predictors looking normal.

イロト イポト イヨト イヨト

SQA

#### Findings: Paradigm-by-Paradigm

| Predictor                                          | Estimate | SE     | р       |
|----------------------------------------------------|----------|--------|---------|
| (Intercept)                                        | 0.2482   | 0.0069 | <0.001  |
| Lemma Frequency                                    | -0.0945  | 0.0005 | <0.001  |
| Orthographic Length                                | 0.0731   | 0.0003 | <0.001  |
| Orthographic Similarity                            | -0.0004  | 0.0001 | <0.001  |
| Inflectional Entropy                               | -0.0079  | 0.0001 | <0.001  |
| ParHas - alloVSnone                                | 0.0654   | 0.0030 | < 0.001 |
| ParHas - <i>suppl</i> VS <i>rule</i>               | 0.0929   | 0.0070 | <0.001  |
| ParHas - ( <i>allo</i> VS <i>none</i> )*LemmaFreq  |          | 0.0004 | < 0.001 |
| ParHas - ( <i>suppl</i> VS <i>rule</i> )*LemmaFreq | -0.0135  |        | <0.001  |

Table: Regression Results for Paradigms (normalized RT)

• Allomorphy generally inhibitory, suppletive more so than regular.

< ロト < 同ト < ヨト < ヨト

SQA

### Findings: Paradigm-by-Paradigm

| Predictor                                                                                               | Estimate           | SE               | р                |
|---------------------------------------------------------------------------------------------------------|--------------------|------------------|------------------|
| (Intercept)                                                                                             | 0.2482             | 0.0069           | <0.001           |
| Lemma Frequency                                                                                         | -0.0945            | 0.0005           | <0.001           |
| Orthographic Length                                                                                     | 0.0731             | 0.0003           | <0.001           |
| Orthographic Similarity                                                                                 | -0.0004            | 0.0001           | <0.001           |
| Inflectional Entropy                                                                                    | -0.0079            | 0.0001           | <0.001           |
| ParHas - alloVSnone                                                                                     | 0.0654             |                  | < 0.001          |
| ParHas - <i>suppl</i> VS <i>rule</i>                                                                    | 0.0929             |                  | < 0.001          |
| ParHas - ( <i>allo</i> VS <i>none</i> )*LemmaFreq<br>ParHas - ( <i>supp</i> /VS <i>rule</i> )*LemmaFreq | -0.0085<br>-0.0135 | 0.0004<br>0.0007 | <0.001<br><0.001 |

Table: Regression Results for Paradigms (normalized RT)

• The more frequent a complex form, the quicker it is processed.

・ロト ・ 一下・ ・ ヨト

nar

#### Findings: Paradigm-by-Paradigm

| Predictor                                          | Estimate | SE     | р       |
|----------------------------------------------------|----------|--------|---------|
| (Intercept)                                        | 0.2482   | 0.0069 | <0.001  |
| Lemma Frequency                                    | -0.0945  | 0.0005 | < 0.001 |
| Orthographic Length                                | 0.0731   | 0.0003 | < 0.001 |
| Orthographic Similarity                            | -0.0004  | 0.0001 | < 0.001 |
| Inflectional Entropy                               | -0.0079  | 0.0001 | < 0.001 |
| ParHas - alloVSnone                                | 0.0654   | 0.0030 | < 0.001 |
| ParHas - <i>suppI</i> VS <i>rule</i>               | 0.0929   | 0.0070 | < 0.001 |
| ParHas - (alloVSnone)*LemmaFreq                    | -0.0085  | 0.0004 | < 0.001 |
| ParHas - ( <i>suppl</i> VS <i>rule</i> )*LemmaFreq | -0.0135  | 0.0007 | < 0.001 |

Table: Regression Results for Paradigms (normalized RT)

- Same general pattern replicated within-paradigm.
- Same pattern for Accuracy, but the models failed to converge.

Daniil Bondarenko, Onur Özsoy, Itamar Kastner

Grammatical Factors in Morphological Processing

#### Findings: Discussion

- Allomorphy generally inhibitory (*none<rule<suppl*): words and paradigms with allomorphic complexity are slower to parse.
  - $\Rightarrow$  Obligatory decomposition (cf. Fruchter et al. 2013)?

イロト イポト イヨト イヨト

### Findings: Discussion

- Allomorphy generally inhibitory (*none<rule<suppl*): words and paradigms with allomorphic complexity are slower to parse.
  - $\Rightarrow$  Obligatory decomposition (cf. Fruchter et al. 2013)?
- Frequency interactions generally facilitatory (*suppl<rule<none*): if a complex form is really frequent, it gets processed more quickly despite its complexity.
  - ⇒ Subregularity effects (cf. Albright and Hayes 2003)?

< ロト < 同ト < ヨト < ヨト



- Sensitivity to allomorphy is a consistently significant factor.
  - $\Rightarrow$  We need to account for grammatical information in (visual) word processing.
- Findings favour approaches that incorporate grammatical information, e.g. Marantz 2013, Fruchter et al. 2013.
- Further steps include, but are not limited to:
  - Oross-linguistic replication on database corpora (e.g. in Dutch);
  - Output Checking for sub-regularity effects (Albright and Hayes 2003).

イロト イボト イヨト イヨト

# Danke!

This study was supported by AL 554/8-1 (DFG Gottfried Wilhelm Leibniz Preis 2014 to Artemis Alexiadou) and the Research Unit on Experimental Syntax and Heritage Languages (**RUESHeL**).

イロト イボト イヨト イヨト

SQC

#### References

Albright, A. & Hayes, B. (2003). Rules vs. analogy in English past tenses: A computational/experimental study. *Cognition* 90(2):119-161.

Baayen, R. H, Milín, P., Durdević, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. *Psychological Review* 118:438-481.

Fruchter, J., Stockall, L., & Marantz, A. (2013). MEG masked priming evidence for form based decomposition irregular verbs. *Frontiers in Human Neuroscience* 7(798):1-16.

Hay, J. & Baayen, R. H. (2005). Shifting paradigms: gradient structure in morphology. *Trends in Cognitive Sciences* 9:342-348.

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. *Behavior Research Methods* 44:287-304. Marantz, A. (2013). No escape from morphemes in morphological processing. *Language and Cognitive Processes* 28:905-916.

Marelli, M., Amenta, S., & Crepaldi, D. (2015). Semantic transparency in free stems: The effect of Orthography Semantics Consistency in word recognition. *Quarterly Journal of Experimental Psychology* 68:1571-1583.

Milín, P., Durdević, D. F., & Moscoso del Prado Martín, F. (2009). The simultaneous effects of inflectional paradigms and classes on lexical recognition: *Evidence from Serbian. Journal of Memory and Language* 60:50-64.

Moscoso del Prado Martín, F., Kostić, A., & Baayen, R. H. (2004). Putting the bits together: an information theoretical perspective on morphological processing. *Cognition* 94:1-18.

Nevins, Andrew. 2011. Phonologically conditioned allomorph selection. In: The Blackwell companion to phonology, 2357-2382.

イロト イボト イヨト イヨト

#### Within-Paradigm Model: RT

| Predictor                                       | Estimate | SE     | р       |
|-------------------------------------------------|----------|--------|---------|
| (Intercept)                                     | 0.1588   | 0.0080 | <0.001  |
| Frequency                                       | -0.0837  | 0.0008 | < 0.001 |
| Orthographic Length                             | 0.0584   | 0.0003 | < 0.001 |
| Orthographic Similarity                         | -0.0004  | 0.0001 | < 0.001 |
| Inflectional Entropy                            | -0.0030  | 0.0001 | <0.001  |
| HasAllos - alloVSnone                           | 0.0334   | 0.0028 | < 0.001 |
| HasAllos - <i>suppl</i> VS <i>rule</i>          | 0.1508   | 0.0076 | <0.001  |
| HasAllos - ( <i>allo</i> VS <i>none</i> )*Freq  | -0.0078  | 0.0004 | < 0.001 |
| HasAllos - ( <i>suppl</i> VS <i>rule</i> )*Freq | -0.0232  | 0.0010 | <0.001  |
| IsAllo - alloVSnone                             | -0.0205  | 0.0025 | <0.001  |
| IsAllo - <i>suppl</i> VS <i>rule</i>            | 0.0528   | 0.0004 | < 0.001 |
| IsAllo - ( <i>allo</i> VS <i>none</i> )*Freq    | 0.0022   | 0.0003 | < 0.001 |
| IsAllo - ( <i>suppl</i> VS <i>rule</i> )*Freq   | -0.0054  | 0.0009 | < 0.001 |

Image: Image:

프 > 프

э

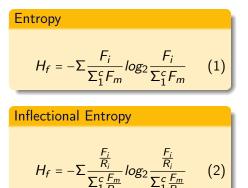
#### Omnibus Model: RT

-

| Predictor                                       | Estimate | SE     | р       |
|-------------------------------------------------|----------|--------|---------|
| (Intercept)                                     | 0.2308   | 0.0087 | <0.001  |
| Frequency                                       | -0.0889  | 0.0010 | < 0.001 |
| Orthographic Length                             | 0.0595   | 0.0004 | <0.001  |
| Orthographic Similarity                         | -0.0061  | 0.0001 | < 0.001 |
| Inflectional Entropy                            | -0.0030  | 0.0001 | < 0.001 |
| ParHas - alloVSnone                             | -0.0603  | 0.0029 | < 0.001 |
| ParHas - <i>suppl</i> VS <i>rule</i>            | -0.1013  | 0.0070 | < 0.001 |
| ParHas - ( <i>allo</i> VS <i>none</i> )*Freq    | 0.0037   | 0.0004 | < 0.001 |
| ParHas - ( <i>suppl</i> VS <i>rule</i> )*Freq   | 0.0016   | 0.0010 | < 0.001 |
| HasAllos - alloVSnone                           | 0.0796   | 0.0035 | < 0.001 |
| HasAllos - <i>suppl</i> VS <i>rule</i>          | 0.2438   | 0.0097 | < 0.001 |
| HasAllos - ( <i>allo</i> VS <i>none</i> )*Freq  | -0.0106  | 0.0005 | < 0.001 |
| HasAllos - ( <i>suppl</i> VS <i>rule</i> )*Freq | -0.0251  | 0.0013 | < 0.001 |
| IsAllo - alloVSnone                             | 0.0164   | 0.0031 | < 0.001 |
| IsAllo - <i>suppl</i> VS <i>rule</i>            | 0.1208   | 0.0083 | < 0.001 |
| IsAllo - ( <i>allo</i> VS <i>none</i> )*Freq    | 0.0002   | 0.0004 | < 0.001 |
| IsAllo - ( <i>suppl</i> VS <i>rule</i> )*Freq   | -0.0057  | 0.0011 | <0.001  |

Daniil Bondarenko, Onur Özsoy, Itamar Kastner

Grammatical Factors in Morphological Processing


◆ロト ◆御ト ◆注ト ◆注ト

Э



#### Inflectional Entropy

Adapted from Information Theory, Inflectional Entropy reflects the uncertainty when choosing between members of a paradigm:



- quantifies the energy spent when a paradigm is activated
- depends on the distributional probabilities of the paradigm's members
- ⇒ more uniform distributions = higher Entropy = faster RTs in processing

イロト イボト イヨト イヨト