Orthographic effects on the production of stop + sibilant clusters by Brazilian speakers of English

Wellington Mendes

Laboratório de Fonologia

Universidade Federal de Minas Gerais Faculdade de Letras • sala 3104

Laboratório de Fonologia Universidade Federal de Minas Gerdi Faculdade de Letras - sala 3104

- Investigate plural formation in English by Brazilian speakers in regards to (1) epenthesis ([parks] ~ *['par.kis]) and (2) accurate voicing of the final sibilant ([begz] ~ *[begs]).
- Identify possible effects of (1) cluster type, (2) orthographic pattern, (3) word, (4) subject and (5) task.

Laboratório de Fonologi

- Investigate plural formation in English by Brazilian speakers in regards to (1) epenthesis ([parks] ~ *['par.kis]) and (2) accurate voicing of the final sibilant ([begz] ~ *[begs]).
- Identify possible effects of (1) cluster type, (2) orthographic pattern, (3) word, (4) subject and (5) task.

Can different orthographic patterns trigger different pronunciations for Brazilian L2 learners of English?

English	Brazilian Portuguese
Many plural nouns end in a (stop + sibilant sequence): cu ps , boa ts , wor ks	Traditionally, word-final (stop + sibilant) sequences have not been part of BP phonology

English	Brazilian Portuguese		
Many plural nouns end in a (stop + sibilant sequence): <i>cups, boats, works</i>	Traditionally, word-final (stop + sibilant) sequences have not been part of BP phonology		
However			
Sound Change			
[dʒis.ˈta.kis] [e.ˈki.pis] [ˈpah.kis]	[dʒis.'ta <mark>ks</mark>] [e.ki <mark>ps</mark>] [pah <mark>ks</mark>]		

Orthography vs Sound Change

Word-final consonant cluster	English		Brazilian Portuguese
	Orthographic Patterns		Orthographic Pattern
	Cs	Ces	Ces
[ps]	cups	grapes	crepes
[ts]	cats	gates	potes
[ks]	ducks	cakes	cheques
[bz]	jobs	tubes	clubes
[dz]	beds	sides	tardes
[gz]	eggs		jegues

BP also presents the **Cs** orthographical pattern on some exceptional cases, such as *biceps* ['bi.seps], *forceps* ['for.seps] and *volts* [voots] (SOARES, 2016).

Theoretical Background

- Exemplar Theory (JOHNSON, MULLENIX, 1997; PIERREHUMBERT, 2003)
- Speech Learning Model (FLEGE, 2005)
- Ongoing sound change (KIM, 2012)
- L2 orthography (COLANTONI et al., 2016)

Laboratório de Fonologia

- Material consists of recordings of High-School students in a picture-naming task and in the reading of controlled sentences.
- 08 subjects and 22 words were selected, resulting in 352 tokens.
- For the study of epenthesis, tokens were classified into either (0) epenthetic or (1) non-epenthetic production.
- For the study of voicing, tokens were classified into displaying either (0) accurate voicing of the final sibilant or (1) inaccurate voicing of the final sibilant.
- Acoustic analysis was carried out with Praat (BOERSMA; WEENINK, 2020).

Research Findings

Production of epenthetic sequences

Laboratório de Fonologia Universidade Federal de Minas Gerde Faculdade de Lethas - sata 3104

Epenthesis rates by ortographic pattern and cluster type

Orthographic Pattern

X-squared = 16.461, df = 1, p-value = 4.966e-05 X-squared = 25.416, df = 5, p-value = 0.0001158

Epenthesis rates by task

Laboratório de Fonologia Universidade Federal de Minas Gerais Faculdade de Lettras - sata 3104

X-squared = 0.25504, df = 1, p-value = 0.6136

Epenthesis rates by word

Epenthesis rates by subject

100% 90% 80% 70% 60% 50% 40% 30% 31,2% 20% 10% 0% /s/ nouns /z/ nouns

Production of the final sibilant

■[S] ■[Z]

Voicing rates by orthographic pattern and cluster type

Laboratório de Fonologia Universidade Federal de Minas Gerais Faculdade de Letras - sala 3104

Orthographic Pattern

X-squared = 0.4088, df = 2, p-value = 0.8151

Sites or sides?

Some BP learners not only tend to produce a voiceless sibilant but also a voiceless stop in the final cluster

Most learners tend to produce a <u>voiced</u> stop followed by a <u>voiceless</u> sibilant

X-squared = 21.533, df = 1, p-value = 3.477e-06

It's likely that [z] has been voiced because it's followed by a voiced segment word-initially

In BP, *paz* might be pronounced as **[pas]** BUT *paz e amor* surfaces as **[pazjamoh]** *Clubes* is usually pronounced **[klubs]** BUT *clubes grandes* might surface as **[klubzgrãds]**

However, voiceless clusters mantain their voiceless property even when followed by voiced segments

Conclusions

- BP learners of L2 English display minimum rates of epenthesis when dealing with plural nouns.
- When epenthesis takes place, it seems to be triggered by orthographical input.
- BP learners of L2 English tend to pronounce -s as [s] even when the suffix should be pronounced [z].
- L2 devoicing seems to be spreading from the final sibilant to the preceding stop. It's worth checking if this phenomenon is also recurrent in Brazilian Portuguese.
- Some L2 phonological representations are equaled to pre-existing L1 phonological categories (FLEGE, 2003; NEVINS, BRAUN, 2009).
- It's also possible that ongoing sound changes in the L1 affect phonological representations in the L2(KIM, 2012).

감사합니다 Natick Danke Ευχαριστίες Dalu Origo Danke Ευχαριστίες Dalu Origo Thank You Köszönöm Tack Origo Criacибо Dank Gracias O 的的的 Merci ありがとう

References:

- COLANTONI, Laura et al. Second language speech. Cambridge University Press, 2015.
- FLEGE, James E. Origins and development of the Speech Learning Model. *Retrieved December*, v. 13, p. 2005, 2005.
- JOHNSON, K.; MULLENNIX, J. Talker variability in speech processing. Morgan Kaufmann Publishers, 1997.
- KIM, Mi-Ryoung. L1-L2 Transfer in VOT and f0 Production by Korean English Learners: L1 Sound Change and L2 Stop Production. 말소리와 음성과학, v. 4, n. 3, p. 31-41, 2012.
- PIERREHUMBERT, Janet B. Phonetic diversity, statistical learning, and acquisition of phonology. *Language and speech*, v. 46, n. 2-3, p. 115-154, 2003.