
Heidelberg University
Faculty of Modern Languages

Department of Computational Linguistics

M.A. Thesis

An Online Learning System for
Parsing and Answering

GeographicalQueries in Natural
Language

Simon Will
4 May 2021

Berliner Straße 109a
69121 Heidelberg
simon.will@gorgor.de

Supervisor: Prof. Dr. Stefan Riezler
Second assessor: Prof. Dr. Katja Markert



Contents

Abstract v

Abriss (German Abstract) vi

1. Introduction 1

2. Related Work 3
2.1. Question Answering by Semantic Parsing . . . . . . . . . . . . . . 3
2.2. Online Learning and Domain Adaptation . . . . . . . . . . . . . . 4

2.2.1. Online Learning . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2. Learning from Weak User Feedback . . . . . . . . . . . . . 6
2.2.3. Domain Adaptation in Semantic Parsing . . . . . . . . . . 7

2.3. OpenStreetMap Query Systems . . . . . . . . . . . . . . . . . . . 8
2.3.1. OpenStreetMap and its Ecosystem . . . . . . . . . . . . . 8
2.3.2. NLMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. NLMaps Data Improvement 13
3.1. Analysis of NLMaps v2 . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1. Train/Test Resemblance . . . . . . . . . . . . . . . . . . . 14
3.1.2. Inconsistencies in NL Term to Tag Mapping . . . . . . . . 15
3.1.3. Inconsistencies in MRL Syntax . . . . . . . . . . . . . . . 16
3.1.4. Little Linguistic Diversity . . . . . . . . . . . . . . . . . . 16
3.1.5. Little variety in location names . . . . . . . . . . . . . . . 18
3.1.6. Unnatural Wording of Queries . . . . . . . . . . . . . . . 19
3.1.7. Improper Usage of OSM Tags . . . . . . . . . . . . . . . . 21

3.2. Improving on NLMaps v2 . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1. Fixing NLMaps v2 Shortcomings . . . . . . . . . . . . . . 22
3.2.2. Extension of NLMaps v2 . . . . . . . . . . . . . . . . . . . 23

4. Web Interface 27
4.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2. MRL Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



Contents

4.3. NL Query Keyword Extraction . . . . . . . . . . . . . . . . . . . . 29
4.4. Online Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5. Experiments 35
5.1. Training on NLMaps v2 and NLMaps v3 . . . . . . . . . . . . . . . 35
5.2. Annotation for New Dataset . . . . . . . . . . . . . . . . . . . . . 38
5.3. Online Learning Simulation . . . . . . . . . . . . . . . . . . . . . 43
5.4. Qualitative Longitudinal Analysis . . . . . . . . . . . . . . . . . . 48

6. Discussion and Future Work 51

7. Conclusion 54

A. Acknowledgements 55

B. Annotation Guidelines 56
B.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.2. Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.3. Linguistic Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.4. Tag Diversity and Depth . . . . . . . . . . . . . . . . . . . . . . . 57

B.4.1. Most Relevant Keys . . . . . . . . . . . . . . . . . . . . . . 57
B.5. Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.6. Counting Annotations . . . . . . . . . . . . . . . . . . . . . . . . 59

ii



List of Figures

2.1. NLMaps v2 query variants . . . . . . . . . . . . . . . . . . . . . . 11

3.1. Errors after NLMaps v2 training . . . . . . . . . . . . . . . . . . . 13
3.2. Typical around-query . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3. Inconsistent operators in around queries . . . . . . . . . . . . . . 17
3.4. 10 random NLMaps v2 queries . . . . . . . . . . . . . . . . . . . . 18
3.5. Area names in NLMaps v2 . . . . . . . . . . . . . . . . . . . . . . 19
3.6. nwr names in NLMaps v2 . . . . . . . . . . . . . . . . . . . . . . . 20
3.7. Unnatural NLMaps v2 queries . . . . . . . . . . . . . . . . . . . . 20
3.8. Opening hours template . . . . . . . . . . . . . . . . . . . . . . . 24
3.9. Area names in NLMaps v3a . . . . . . . . . . . . . . . . . . . . . . 25
3.10. 10 random NLMaps v3b queries . . . . . . . . . . . . . . . . . . . 26

4.1. Successful query process . . . . . . . . . . . . . . . . . . . . . . . 32
4.2. MRL correction process . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3. Querying architecture . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4. Feedback & learning architecture . . . . . . . . . . . . . . . . . . 34

5.1. Errors when pre-trained on v2.1 . . . . . . . . . . . . . . . . . . . 36
5.2. Errors when pre-trained on v3b . . . . . . . . . . . . . . . . . . . 37
5.3. Errors when pre-trained on v3 . . . . . . . . . . . . . . . . . . . . 38
5.4. Pre-training learning curves . . . . . . . . . . . . . . . . . . . . . 39
5.5. Annotation progress overview . . . . . . . . . . . . . . . . . . . . 41
5.6. Tag distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7. v3+v4 learning curve . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.8. Errors after fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . 45
5.9. 1-iter learning curve on v4 . . . . . . . . . . . . . . . . . . . . . . 46
5.10. 1-iter learning curve on v3 . . . . . . . . . . . . . . . . . . . . . . 46
5.11. 5-Iter learning curve on v4 . . . . . . . . . . . . . . . . . . . . . . 48
5.12. Longitudinal analysis . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.13. NL queries for butchers . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



List of Tables

2.1. NLMaps v2 statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. NLMaps v2 splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Previous NLMaps results . . . . . . . . . . . . . . . . . . . . . . . 12

3.1. Nominatim special phrases . . . . . . . . . . . . . . . . . . . . . . 15
3.2. NLMaps v2.1 statistics . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3. Dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1. Performance of pre-trained parsers . . . . . . . . . . . . . . . . . 36
5.2. Annotator profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3. Dataset statistics with NLMaps v4 . . . . . . . . . . . . . . . . . . 42
5.4. Performance of fine-tuned parsers. . . . . . . . . . . . . . . . . . . 47

iv



Abstract

OpenStreetMap (OSM) stores a large amount of data useful for everyday tasks as
well as for informational queries, but it is difficult to query without using special-
ized applications or being versed in special OSMquery languages. The existingNL-
Maps v2 dataset can be used for building a question answering system that trans-
lates a natural language query into a machine-readable query used for extracting
the answer from the OSM database, but the performance of parsers trained on that
dataset has been very limited when tested on new queries.

In this thesis, we analyze NLMaps v2 and find several shortcomings. After fixing
them, we extend the dataset by generating new, linguistically diverse queries with
a probabilistic templating approach, which we then use to train a new parser that
significantly outperforms parsers presented in previous work.

In order to make our parser accessible, we build a web interface for asking
queries, which can also be used to correct wrong parses and which is capable of
learning from the corrections in an online fashion. We use the new interface to
hire users to issue queries and to correct the parses, thus creating the first large
NLMaps dataset consisting of real user queries. This dataset is used in online learn-
ing simulation experiments in order to find the most effective approach to learn
from new feedback.

v



Abriss (German Abstract)

OpenStreetMap (OSM) speichert riesige Mengen an Daten, die nützlich sind, um
alltägliche und weniger alltägliche Fragen zu beantworten. Doch für exakte Ab-
fragen sind in der Regel entweder auf Einzelfragen spezialisierte Software oder
Kenntnisse in speziellen OSM-Anfragesprachen notwendig. Allerdings kann mit
dem bestehenden Korpus NLMaps v2 ein Parsing-System trainiert werden, das na-
türlichsprachliche Anfragen in eine maschinenlesbare Anfrage übersetzt, mithilfe
derer dann die Antwort auf die Frage in der OSM-Datenbank gefunden werden
kann. Die Zuverlässigkeit von auf diesem Korpus trainierten Parsing-Systemen
war aber bisher sehr begrenzt.

In dieser Arbeit analysieren wir das Korpus NLMaps v2 und stellen verschiede-
ne Mängel fest. Nach dem Beheben dieser Mängel erweitern wir das Korpus um
neue, linguistisch diverse Anfragen, die mit einem probabilistischen Mustervorla-
gensystem erstellt werden. Das erweiterte Korpus nutzen wir dann, um ein neues
Parsing-System zu trainieren, das die bisher in der Literatur vorgestellten Systeme
deutlich übertrifft.

Unser Parsing-System machen wir in einem neuen Web-Interface zugänglich,
das sowohl dazu verwendet werden kann, Fragen zu stellen, als auch dazu, falsche
Antworten zu korrigieren. Das Web-Interface ist außerdem dazu in der Lage, das
Parsing-System auf korrigierten Beispielen online weiter zu trainieren.Wir nutzen
es in dieser Arbeit auch, um mithilfe von Studienteilnehmern das erste große NL-
Maps-Korpus zu erstellen, das aus Anfragen verschiedenerMenschen besteht. Die-
ses Korpus wird in dieser Arbeit zudem dazu verwendet, in verschiedenen Online-
Lern-Simulationen den besten Ansatz zu finden, von neuen Rückmeldungen zu
lernen.

vi



1. Introduction

The OpenStreetMap project’s database stores a wealth of geographical informa-
tion about the world ranging from map-typical features like borders, streets and
buildings to detailed information about points of interest like shops, sights and
recreational areas. However, extracting specific information – such as the an-
swer for the simple natural language question ‘Which Italian restaurants in Berlin
are wheelchair-accessible?’ – requires either purpose-built tooling or knowledge
of custom OpenStreetMap query languages. A natural language interface to the
database would make the available information more accessible.

Important groundwork for such a natural language interface was laid by Haas
and Riezler (2016a), who developed a simple machine-readable query language
(MRL) for OpenStreetMap and also released the dataset NLMaps, which maps nat-
ural language (NL) queries to their corresponding counterpart in that query lan-
guage. This dataset makes it possible to train a semantic parser that parses NL into
MRL queries.

Despite various models producing good results on the NLMaps test set, their
performance does not suffice for practical usage on new real world queries. Inves-
tigating that problem, this thesis reviews previous work on NLMaps and reveals
shortcomings in the published dataset. In order to improve on it, the existing
dataset is overhauled by eliminating some of the identified shortcomings and by
extending it through the use of probabilistic templates to include more diverse
queries on both the natural language and the machine-readable language side.

The improvedNLMaps dataset is used to train an improved parsingmodel, which
is exposed via a new web interface so that it can be used for both asking queries
and correcting a parse if the model gets it wrong. In order to further improve
the model, the system is able to directly learn from the corrected queries using an
online learning technique.

The newweb interface is employed in an annotation experiment with users from
various backgrounds who use it to ask new queries and to correct errors. The data
collected in this way is used to test the online learning setup and is also released
as a new NLMaps dataset.

1



1. Introduction

Theweb interface and all datasets published in this work are available at https:
//nlmaps.gorgor.de/. The following code repositories are associated with this
thesis and are tagged with the Git tag thesis to mark the state they are in as of
the thesis’s publishing date:

• https://gitlab.cl.uni-heidelberg.de/will/nlmapsweb/: Theweb
interface.

• https://gitlab.cl.uni-heidelberg.de/will/joeynmt-server/:
The backend server handling parsing and training the parser.

• https://gitlab.cl.uni-heidelberg.de/will/nlmaps-tools/: A
package containing various tools for working with NLMaps datasets, for
generating the NLMaps v3 version and for interpreting an MRL query and
retrieving an answer.

• https://gitlab.cl.uni-heidelberg.de/will/nlmaps-ma/: This the-
sis along with scripts for data analysis and plotting.

• https://github.com/Simon-Will/joeynmt: A slightly modified ver-
sion of Joey NMT (Kreutzer, Bastings, et al. 2019).

• https://github.com/Simon-Will/osm-python-tools: A slightlymod-
ified version of OSMPythonTools (Mocnik 2017). A pull request to the up-
stream repository is still open.

2

https://nlmaps.gorgor.de/
https://nlmaps.gorgor.de/
https://gitlab.cl.uni-heidelberg.de/will/nlmapsweb/
https://gitlab.cl.uni-heidelberg.de/will/joeynmt-server/
https://gitlab.cl.uni-heidelberg.de/will/nlmaps-tools/
https://gitlab.cl.uni-heidelberg.de/will/nlmaps-ma/
https://github.com/Simon-Will/joeynmt
https://github.com/Simon-Will/osm-python-tools


2. Related Work

2.1. Question Answering by Semantic Parsing
With the advent of the computer age, there also arose interest in leveraging the
digitally stored information for automatically answering natural language ques-
tions with first systems being developed as early as the 1960s (e.g. Green et al.
1961). The field of question answering (QA) can be genereally divided into open-
domain QA, which concerns itself with answering arbitrary questions based on
large quantities of natural language text or other unstructured information by em-
ploying techniques from information retrieval, and knowledge-based QA, which
takes advantage of structured information in order to answer questions about spe-
cific information that is stored in that knowledge base (cf. Mollá and Vicedo 2007;
Jurafsky and Martin 2021). The work in this thesis is an instance of the latter.

In the most common variant of knowledge-based QA, a natural language query
is parsed into a machine-readable logical form for representing the meaning (se-
mantic parsing), which can then be used to extract the answer from the knowl-
edge base. Notable datasets for this task include the Air Travel Information Sys-
tem (ATIS) dataset (Hemphill et al. 1990), which maps 5280 questions about flights
in the USA to a representation in SQL, and GeoQuery, which maps 877 questions
about US geography to lambda-calculus based representations in Prolog (Zelle and
Mooney 1996). While these two are small datasets specialized on one domain each,
the crowd-sourced WikiSQL dataset introduced by Zhong et al. (2017) comprises
80 654 questions on numerous different databases, but all of their queries are very
simple and include no advanced SQL operators.

With their dataset called Spider, Yu et al. (2018) introduced the first text-to-SQL
dataset that features a large number of different tables as well as complex SQL
queries. They present initial results on their dataset using sequence-to-sequence
models like attention-based RNNs as well as more rigid slot-filling models based
on SQLNet (Xu et al. 2017), which fill pre-defined places in the SQL query. The
latter perform better in their experiments.

Since Hwang et al. (2019) showed that using BERT (Devlin et al. 2019) for encod-

3



2. Related Work

ing query and database schema in text-to-SQL task is highly effective onWikiSQL,
most recent systems use models based on BERT also on the Spider task (Shaw et
al. 2020; Wang et al. 2020; Lin et al. 2020) with some even taking advantage of
the content of the database (Wang et al. 2020; Lin et al. 2020) to further improve
performance.

2.2. Online Learning and Domain Adaptation

2.2.1. Online Learning

Neural machine translation models pθ are usually (Stahlberg 2020, p. 376) trained
with the goal of minimizing the expected cross-entropy loss on the training set
(X,Y )train consisting of a set of source sentences X and a set of target sentences
Y by taking steps ∆θ in the opposite direction of the gradient:

θ∗ = argmin
θ

E(x,y)∼(X,Y )train − log pθ(y|x) (2.1)

∆θ ∝ ∇E(x,y)∼(X,Y )train − log pθ(y|x) (2.2)

∝ E(x,y)∼(X,Y )train −∇ log pθ(y|x) (2.3)

This explicit method – also called batch gradient descent as an instance of batch
learning (Goodfellow et al. 2016, p. 275; Murphy 2021, p. 100) – requires making
a prediction for every instance of the training set, which makes it prohibitively
computationally expensive. Instead, stochastic gradient descent (SGD) – as an in-
stance of online learning (Goodfellow et al. 2016, p. 275; Murphy 2021, p. 100) –
approximates the gradient by sampling a single instance (x, y) from the training
set and updating the parameters based on this instance:

(x, y) ∼ (X,Y )train (2.4)

∆θ ∝ −∇ log pθ(y|x) (2.5)

(2.6)

With SGD, the model parameters can be updated much more often, but the vari-
ance of the gradient is also larger. In practice, minibatches are used as a compro-
mise when training a model on an already-prepared dataset. However, in the case
where the dataset becomes available only one instance at a time, the online learn-

4



2. Related Work

ing setup is still useful. A prominent usecase is post-editing of machine translation
outputs. Following the definition of Ortiz-Martínez (2016), online learning from
post-editing can be operationalized like this:

1. An MT system receives a source sentence x.

2. The system makes a prediction ŷ for the target sentence.

3. A user reviews ŷ, adjusts it and presents the system with the correct trans-
lation y.

4. The MT system is updated by learning from y.

This procedure is especially useful for adapting a system pre-trained on general
data to another domain. In statistical machine translation (SMT), online learn-
ing research has first focused on adjusting the weights of the log-linear model
(e.g. Liang et al. 2006; Arun and Koehn 2007; Watanabe et al. 2007). Later, Ortiz-
Martínez et al. (2010) and Ortiz-Martínez (2016) employed online learning in the
scenarios of post-editing and interactive machine translation (IMT; Casacuberta et
al. 2009; Barrachina et al. 2009) for adjusting also the model features themselves.

For NMT, Turchi et al. (2017) simulated online learning with an attentional
encoder-decoder network finding that simply updating by doing an SGD step with
the post-edited instance is superior to a more complicated approach in which they
added an additional training step after receiving each source sentence but before
predicting the target sentence. They also found that doing five training iterations
per post-edited instance is actually worse than doing only one iteration. Very
interestingly, vanilla SGD outperforms Adagrad, Adadelta and Adam in their ex-
periments.

At the same time, Peris, Cebrián, et al. (2017) performed very similar work, in
which they compared gradient descent optimization algorithms with more com-
plicated passive-aggressive update rules using subgradient methods. Gradient de-
scent optimizers performed significantly better, although vanilla SGD was inferior
to adaptive gradient update rules, out of which Adadelta and Adam performed
best.

Peris and Casacuberta (2019) continued this work for post-editing and IMT sce-
narios and found Adadelta to be the best and also the most stable optimizer with
regard to varying the learning rate. They demonstrate that online learning can be
successfully used to enhance the performance not only of out-of-domain systems,
but also of systems pre-trained with a limited amount of in-domain data.

5



2. Related Work

While the work of Turchi et al. (2017), Peris, Cebrián, et al. (2017), and Peris and
Casacuberta (2019) was done using simulations, Karimova et al. (2018) conducted
an actual experiment with students of translation studies post-editing NMT out-
puts, in which they found that online adaptation was able to improve both BLEU
score and key-stroke and mouse-action ratio (for KSMR cf. Barrachina et al. 2009).

2.2.2. Learning from Weak User Feedback

A related line of NMT research attempts to improve a pre-trained system with a
weaker form of user feedback: Instead of a user post-editing a target sentence, they
can give feedback in the form of scalar rewards about the quality of a translation
or even specific parts of it, e.g. by rating it from 0 to 10. This has the advantage of
requiring less user effort and skill, but it is more difficult for a model to correct its
predicted translation due to the lack of a gold translation. This poses a particular
challenge in tasks with a very large output space like machine translation.

Scalar feedback can be leveragedwith reinforcement learning techniques, which
was done by Kreutzer, Sokolov, et al. (2017), who simulated user feedback with
sentence-level gGLEU (Wu et al. 2016) obtained from out-of-domain reference
translations. In their comparison of domain adaptation via fully-supervised fine-
tuning and learning from the gGLEU “rewards” using expected loss minimization
(which is in essence the REINFORCE algorithm by Williams (1992)), they found
that learning from weak feedback is a viable method of domain adaptation, even
though the fully-supervised approach naturally yielded better results. They also
showed that performance on the original data used for pre-training deteriorated in
both scenarios, but more so with fully-supervised fine-tuning. Nguyen et al. (2017)
employ the advantage actor-critic algorithm (Mnih et al. 2016) in a similar scenario
with one difference of introducing noise and skew in their reward signals in order
to simulate actual user feedback. They also do not perform domain adaptation, but
fine-tune on a separate part of the training set.

In contrast to those systems, which simulate a sequence-level reward signal af-
ter predicting a complete translation, Lam et al. (2018) use an advantage actor-
critic NMT system in an IMT-style setting where feedback is simulated for partial
translations when the NMT model is uncertain about its prediction. Unsurpris-
ingly, they observed that the more granular feedback yields improvements over
the sentence-level feedback used in Nguyen et al. (2017).

Online methods are of limited use in production systems where the risk of dete-
riorating performance cannot be taken, especially in the light of possibly adversar-
ial actors. Therefore, user feedback is usually logged for later learning, which is un-

6



2. Related Work

problematic for post-edits since they can serve as self-contained training instances
not much different from reference translations in specially-prepared training sets.
However, weaker user feedback in the form of ratings is tied to the system’s origi-
nal prediction, which complicates learning from it with another system. Lawrence,
Sokolov, et al. (2017) used a control-variate-based smoothing technique called de-
terministic propensity matching to leverage this kind of logged feedback for offline
learning with an SMT system. Later, Lawrence and Riezler (2018) applied this ap-
proach also to improving an NMT-based parser on the NLMaps v2 dataset, which
is discussed later in this thesis. They were able to learn from both sequence- and
token-based feedback (both simulated and actual human), but the more granular
token-based feedback proved superior.

Kreutzer, Berger, et al. (2020) conducted an offline learning NMT experiment
with human annotators who correctedwrong translations in one scenario and only
marked erroneous passages in another scenario. They found comparable improve-
ments over the baseline in both scenarios, but the errormarkings took significantly
less effort to collect.

For an overview of human feedback in reinforcement learning for NLP, see the
work of Kreutzer, Riezler, et al. (2020).

2.2.3. Domain Adaptation in Semantic Parsing

Domain Adaptation is especially interesting for custom semantic parsing systems
on new domains since creating custom datasets involves a lot of expensive annota-
tion work resulting in small dataset sizes. The goal here is pre-training a model on
a larger dataset that is similar to the custom one in order to reduce the needed size
of the custom dataset or to simply improve performance. Kennardi et al. (2019)
pre-trained an attention-based RNN on the ATIS dataset and then fine-tuned the
pre-trained model on subsets of the GeoQuery dataset showing that especially for
small subsets (i.e. small target domain datasets) pre-training on ATIS improved the
performance.

Instead of pre-training a semantic parsing model on a larger semantic parsing
dataset, Chen et al. (2020) employ a system that takes advantage of pre-trained
language representations in the form of BART (Lewis et al. 2020), a BERT-inspired
encoder-decoder setup trained by denoising artificially corrupted text. They show
that the BART-based parser incorporating pre-trained language representations
outperforms an LSTM-based (Hochreiter and Schmidhuber 1993) parser trained
from scratch – an effect that is especially pronounced when only a subset of the
data from the target domain is used.

7



2. Related Work

2.3. OpenStreetMap Query Systems

2.3.1. OpenStreetMap and its Ecosystem

In a crowd-sourcing approach similar to Wikipedia’s, the OpenStreetMap1 (OSM)
project aims to create a map of the world by letting users contribute missing data,
ranging from low-granular objects like forests or streets to high-granular objects
like benches or information boards and even including non-geographical informa-
tion like opening hours of stores or the types of cuisine available in restaurants.
The OpenStreetMap Foundation makes the map data available under the Open
Data Commons Open Database License2 effectively allowing the usage of the data
for any project but requiring that any extensions of the data are shared under the
same license again.

OpenStreetMap data is made up of three different elements: Nodes, ways (or-
dered lists of nodes) and relations (groups of elements). The elements’ meaning is
derived from the tags that are added to them. For instance, an Italian restaurant
that has vegan options and is wheelchair-accessible may be tagged as a node with
the following tags:

• amenity=restaurant

• cuisine=italian

• diet:vegan=yes

• diet:vegetarian=yes

• wheelchair=yes

• opening_hours=Mo-Sa 11:30-22:00

• website=https://restaurant.example.com/

The OpenStreetMap database can be queried in a number of ways, the most
prevalent one of which is via Geocoders such as Nominatim3. They allow the
database being queried by the name or address of an object in forward geocoding
or by its geographic coordinates in reverse geocoding.

1OpenStreetmap Foundation (OpenStreetMap). https://www.openstreetmap.org/

about.
2Open Data Commons (Open Data Commons Open Database License (ODbL)). https : / /

opendatacommons.org/licenses/odbl/.
3Hoffmann et al. (Nominatim). https://nominatim.org/.

8

https://www.openstreetmap.org/about
https://www.openstreetmap.org/about
https://opendatacommons.org/licenses/odbl/
https://opendatacommons.org/licenses/odbl/
https://nominatim.org/


2. Related Work

For querying by more than name or address, there are two specialized systems:
Sophox4 and the Overpass API 5, which can be used most conveniently via the
Overpass Turbo 6 interface. The Overpass API allows queries using an XML-like
language or –more prominently – its customOverpassQuery Language (Overpass
QL). The question ‘Which Italian restaurants in Berlin are wheelchair-accessible?’
could be expressed with the following Overpass Query

Overpass QL for wheelchair-accessible restaurants in Heidelberg
(area[name=Heidelberg];) -> .a;

nwr[amenity=restaurant][wheelchair=yes](area.a);

out geom;

2.3.2. NLMaps

The open license as well as the diverse and rich information available in the data
make OSM a promising candidate for the foundation of an information retrieval
system about geo-related questions. The first step in this direction was made
by Haas and Riezler (2016a), when they released the first version of the NLMaps
dataset a “corpus consisting of 2,380 questions about geographical facts that can
be answered with the [OSM] database.”7 Each question is provided as a natural
language (NL) query in English and in German and as its rendering in a custom
machine-readable language (MRL). The dataset can be used to develop a parser for
parsing an NL query into its corresponding MRL query, which can then be used to
extract the answer to the question from the OSM database.

In two subsequent works, Lawrence8 and Riezler (2016, 2018) expanded the En-
glish part9 of the dataset to includemore NL-MRL pairs and by extension also more
word types and OSM tags. Table 2.1 shows key data about the size of the extended
dataset. Table 2.2 shows the size of the dataset splits. In contrast to the first ver-
sion, the NL-MRL pairs in this extended version were created with a templating
approach, whichmade use of a table10 mapping natural language expressions (such

4Astrakhan (Sophox). https://wiki.openstreetmap.org/wiki/Sophox. The official
website at https://sophox.org is offline as of December 2020.

5Olbricht (Overpass API ). https://overpass-api.de/.
6Raifer (Overpass Turbo). https://overpass-turbo.eu/.
7Haas and Riezler (2016b). https://www.cl.uni-heidelberg.de/statnlpgroup/
nlmaps/.

8Carolin Haas changed her name to Carolin Lawrence in 2016.
9NLMaps v2 is not available in German.

10Nominatim Special Phrases. https://wiki.openstreetmap.org/wiki/Nominatim/
Special_Phrases/EN. It is not known which version of the table was used for generating
the NLMaps v2 dataset.

9

https://wiki.openstreetmap.org/wiki/Sophox
https://sophox.org
https://overpass-api.de/
https://overpass-turbo.eu/
https://www.cl.uni-heidelberg.de/statnlpgroup/nlmaps/
https://www.cl.uni-heidelberg.de/statnlpgroup/nlmaps/
https://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN
https://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN


2. Related Work

as restaurant) to OSM tags (such as amenity=restaurant).

NLMaps v1 NLMaps v2

Instances 2380 28 609
Tokens 25 906 202 088
Types 1002 8710
Avg. Tokens per NL 10.88 7.06
Distinct Tags 477 6582

Table 2.1.: Numeric information about NLMaps v1 and NLMaps v2. The table is
reproduced from Lawrence and Riezler (2018).

Set split NLMaps v2

train 16 172
dev 1843
test 10 594

Table 2.2.: Split sizes in the NLMaps v2 dataset.

In addition to the NL and the MRL queries, the dataset includes a linearized
(LIN) version of the MRL query. This is a formally equivalent variant of the MRL
query that avoids parentheses and commata by specifying each operator’s arity
instead. For further information on this, cf. Andreas et al. (2013) and Haas and
Riezler (2016a). All parsing models discussed in this thesis parse the NL query
into the LIN query, which can be converted into the MRL query for retrieving the
result from the OSM database.

All of the question and query variants are also provided in a version where the
locations and the points of interest are replaced by generic _LOCATION and _POI

tokens, respectively. This is intended to simplify training a parser model which
relies on an external Named Entity Recognition (NER) component for the named
entities. Figure 2.1 shows an overview of the available variants.

NLMaps Evaluation

There are two methods of evaluating a model’s predictions on an NLMaps dataset:
Comparing the predicted MRLs with the gold MRLs or comparing the results re-
trieved by interpreting the MRLs. The latter method defines precision, recall and
F1 score, where F1 is the measure that is usually reported.

10



2. Related Work

Unmasked MRL
query(

around(

center(

area(keyval('name','München)),

nwr(keyval('name','Super Cut'))

),

search(

nwr(keyval('amenity','post_box'))

),

maxdist(DIST_INTOWN)

),

qtype(latlong)

)

Masked MRL
query(

around(

center(

area(keyval('name','_LOCATION')),

nwr(keyval('name','_POI'))

),

search(

nwr(keyval('amenity','post_box'))

),

maxdist(DIST_INTOWN)

),

qtype(latlong)

)

Unmasked LIN
query@2

around@3

center@2

area@1 keyval@2 name@0 München@s

nwr@1 keyval@2 name@0 €SuperCut@s

search@1

nwr@1 keyval@2 amenity@0 post_box@s

maxdist@1 DIST_INTOWN@0

qtype@1 latlong@0

Masked LIN
query@2

around@3

center@2

area@1 keyval@2 name@0 _LOCATION@s

nwr@1 keyval@2 name@0 _POI@s

search@1

nwr@1 keyval@2 amenity@0 post_box@s

maxdist@1 DIST_INTOWN@0

qtype@1 latlong@0

Figure 2.1.: MRL and LIN queries for the NL query ‘Where Post Boxes near Super
Cut in München’ in their unmasked and masked form. The instance is
taken from NLMaps v2.

precision =
number of correct answers

number of MRLs that yield an answer

recall =
number of correct answers
number of all NL-MRL pairs

F1 = 2× precision× recall
precision+ recall

This thesis takes the stand that comparing the results of queries is not appro-
priate because of two major reasons: First, the result of two MRLs may be iden-
tical by chance, especially when asking whether something exists or how many
of something there are. Second, such an evaluation is dependent on the versions
of the OSM database and the version of the software interpreting the MRL mak-
ing reported scores difficult to reproduce. Additionally, retrieving results takes up
a large amount of time and computing resources, which renders this evaluation
method unsuitable for validation during training.

Therefore, the models in this thesis are compared using exact match accuracy on
MRLs. Theoretically, this method has the problem that MRLs can be semantically

11



2. Related Work

equivalent but syntactically different by switching the order of OSM tags or val-
ues (e.g. keyval('diet:vegetarian', or('yes','only')) vs. keyval('diet:
vegetarian', or('only,'yes))). In practice however, we ensure that all MRLs
used for training are in a canonical form by sorting tags and values alphabetically.
This way, switched order does virtually not occur in the models of this thesis.

accuracy =
number of system MRLs perfectly matching the gold MRL

number of all NL-MRL pairs

Previous Results on NLMaps v2

Lawrence and Riezler (2018) trained a GRU-based encoder-decoder model (Cho
et al. 2014) with Bahdanau attention (Bahdanau et al. 2015) on NLMaps v2, once
without masking the named entities and once with masking them. The model
trained on the masked version is accompanied by an NER model. Staniek (2020)
trained a similar model for comparison with Lawrence and Riezler (2018), once as
a token-based RNN and once as a character-based RNN, both without masking the
named entities. The results are shown in Table 2.3. In essence, they show that it
is easy enough for the character-based model to copy the named entities from the
source to the target so that a separate NER model does not improve the results.

Model unmasked masked + NER

Lawrence and Riezler (2018) (token) 0.804 0.901
Staniek (2020) (token) 0.834 —
Staniek (2020) (character) 0.938 —

Table 2.3.: F1 score after retrieving query results of models by Lawrence and Rie-
zler (2018) and Staniek (2020) on NLMaps v2

Even though Staniek achieves an F1 score of 93.8 % and an accuracy of 89.8 %11,
the task of parsing NL queries is not solved, at all. The high performance is the
result of a number of shortcomings in the NLMaps v2 dataset, a part of which has
already been discussed by Staniek and which are investigated in more detail in
Chapter 3.

11The accuracy is not reported in the original work, but Staniek kindly made his model available.

12



3. NLMaps Data Improvement

After training a character-based encoder-decoder model as described by Staniek
(2020) on the NLMaps v2 dataset, it quickly becomes apparent that the 89.8 % ac-
curacy on the test split is not reflected in the model’s performance on new queries.
In particular, the model is not robust against unseen wordings of a query and it –
more understandably – also fails for unseen OSM tags. Figure 3.1 shows typical
errors the model makes on NL queries from NLMaps v4, which is introduced in
Section 5.2.

Gold MRL
query(

around(

center(

area(keyval('name','Westheim')),

nwr(

keyval('name','Martinskirche')

)

),

search(

nwr(keyval('amenity','cafe'))

),

maxdist(DIST_INTOWN)

),

qtype(latlong)

)

System MRL
query(

around(

center(

area(keyval('name','Westheim')),

nwr(

keyval('name','Martinskirche')

)

),

search(

nwr(keyval('amenity','cafe'))

),

maxdist(DIST_INTOWN)

),

qtype(show:me)

)

(a) ‘Show me the cafes near Martinskirche in Westheim’

Gold MRL
query(

around(

center(

nwr(keyval('name','Zenica'))

),

search(

nwr(keyval('natural','valley'))

),

maxdist(DIST_OUTTOWN)

),

qtype(least(topx(1)))

)

System MRL
query(

around(

center(

area(keyval('name','Paris')),

nwr(keyval('name','Zenica'))

),

search(

nwr(keyval('shop,'cenica'))

),

maxdist(DIST_INTOWN)

),

qtype(least(topx(1)))

)

(b) ‘Is there any valley in the surroundings of Zenica?’

Figure 3.1.: Selected typical errors of a model trained on NLMaps v2.

13



3. NLMaps Data Improvement

3.1. Analysis of NLMaps v2
Seven separate issues with the NLMaps v2 dataset can be identified that lead to a
subpar performance on new queries not present in the training set or test set.

1. Extremely close resemblance between training set and test set

2. Inconsistencies in mapping from NL term to OSM tag

3. Inconsistencies in MRL syntax

4. Little linguistic variety on the NL side

5. Little variety with respect to location names

6. Unnatural wording of some queries

7. Usage of deprecated OSM tags

In the following subsections, these issues are analyzed in detail and solutions for
how to improve on NLMaps v2 are proposed.

3.1.1. Train/Test Resemblance

As already noticed by Staniek (2020), the fact that NLMaps v2 was created by using
fairly simple templates led to nearly identical NL queries occurring in the training
and test set – only the named entities of the area and the named reference point
(if any is present in the query) being different. E.g., the training set contains the
query ‘where book store in Heidelberg’, while the test set contains the two queries
‘where book store in Edinburgh’ and ‘where book store in Paris’.

By removing all queries from the development and test sets that appear iden-
tically in the training set when disregarding the named entities, Staniek (ibid.)
reduced the size of the test set from 10 594 to 4156 queries. On this smaller test set,
his model’s accuracy fell from 93.8 % to 83.5 %.

It must be noted that even though the most glaring similarities between the
training and the test set can be removed in this way, the underlying reason for the
similarity remains: Both sets are generated by the same templates using the same
table for mapping NL terms to OSM tags. As a consequence, only 11 of 534 tags
(already excluding name=* tags) in the test set do not occur in the training set.1

1And 4 of those are proper names. The 11 tags are: addr:street=Bergheimer Straße,
brand=Vauxhall, cuisine=german, fireplace=yes,
internet_access:fee=no, product=whisky, ref=A 4, ref=M90,
school:de=Grundschule, shelter_type=weather_shelter, sports=tennis.

14



3. NLMaps Data Improvement

While it is theoretically possible to split off a number of templates, terms and
OSM tags for generating an independent test set, the templating engine will still
remain the same and the templates may also be designed by the same template
author. Therefore, a robust evaluation is impossible on a machine-generated test
set and must be performed on human-written queries instead.

3.1.2. Inconsistencies in NL Term to Tag Mapping

There is a collaborative table (created for the Nominatim geocoder) on the OSM
Wiki mapping NL terms to OSM tags,2 whose structure is shown in a simplified
way in the excerpt provided in Table 3.1. For generating an NL-MRL pair of NL-
Maps v2, Lawrence and Riezler (2018) selected a row of the table, put the NL term
into an NL query template and used the OSM tag for building the corresponding
MRL query. For terms which are mapped to only one OSM tag in the table, this
approachworks fine. However, there are terms like forest or bar which aremapped
to two different OSM tags. This leads to the situation that in NLMaps v2 an NL
query asking for a pub may have amenity=pub in the corresponding MRL and
another query asking for a pub may have amenity=bar instead. This is of course
unreasonable and also impossible to learn for a model.

NL Term OSM Tag

airport aeroway=aerodrome

bar amenity=bar

bar amenity=pub

church amenity=place_of_worship

church building=church

church historic=church

forest landuse=forest

forest natural=wood

pub amenity=bar

pub amenity=pub

wood landuse=forest

wood natural=wood

Table 3.1.: Simplified excerpt from Nominatim special phrases table.

The solution for this requires some insight into the OSM tags in question. In
cases like landuse=forest and natural=wood, the user issuing the query most

2Nominatim Special Phrases. https://wiki.openstreetmap.org/wiki/Nominatim/
Special_Phrases/EN.

15

https://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN
https://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN


3. NLMaps Data Improvement

likely will not care about the difference,3 so they should be merged into the union
or(landuse=forest, natural=wood) in the MRL. In other cases, the user may
care about the difference: The bar–pub distinction is fairly transparent4 and a user
asking for pubs should not be referred to bars or vice versa.

3.1.3. Inconsistencies in MRL Syntax

When querying for objects around some point of interest, it’s possible to specify a
name for that reference place with the nwr operator as well as the area which that
reference place is located in with the area operator. A typical MRL is shown in
Figure 3.2.

query(

around(

center(

area(keyval('name','Liverpool')),

nwr(keyval('name','Mollington Avenue'))

),

search(nwr(keyval('amenity','bank'))),

maxdist(DIST_INTOWN),

topx(1)

),

qtype(latlong)

)

Figure 3.2.: TheMRL for ‘closest Bank fromMollington Avenue in Liverpool’ has both
the nwr and area operators in the center clause.

When however the reference place is given without specifying the area which
it is located in, some MRLs have the reference place in the nwr operator while
others have it in the area operator. Examples are shown in Figure 3.3. This is
a meaningless difference and impossible for the model to learn consistently. The
easiest way to resolve this is by just replacing the area operator with the nwr

operator when the center clause has no nwr operator.

3.1.4. Little Linguistic Diversity

When looking through NLMaps v2, the reader will notice that most NL queries
look very much alike, as demonstrated by the ten random samples in Figure 3.4.

3landuse=forest is mostly used for areas managed for forestry while natural=wood is
used for wild forests. However, mappers have different opinions about the issue, as well. In
practice, most data processors don’t differentiate between the tags. Cf. https://wiki.

openstreetmap.org/wiki/Forest.
4For the details, cf. https://wiki.openstreetmap.org/wiki/Tag:amenity=bar.

16

https://wiki.openstreetmap.org/wiki/Forest
https://wiki.openstreetmap.org/wiki/Forest
https://wiki.openstreetmap.org/wiki/Tag:amenity=bar


3. NLMaps Data Improvement

query(

around(

center(

area(keyval('name','Heidelberg'))

),

search(nwr(keyval('place','town'))),

maxdist(DIST_OUTTOWN)

),

qtype(count)

)

(a) ‘how many towns around Heidelberg’
query(

around(

center(

nwr(keyval('name','Nantes'))

),

search(nwr(keyval('amenity','waste_basket'))),

maxdist(DIST_INTOWN)

),

qtype(count)

)

(b) ‘How many Rubbish Bins near Nantes’

Figure 3.3.: Inconsistent use of nwr and area operator for reference place in two
MRLs.

This betrays that there has been only a small number of rigid templates in use
for generating the dataset, which is a problem because asking whether there is a
museum in Nice is of course not only possible with the query ‘Is there Museums in
Nice’.5 The query may also be worded as ‘Are there any museums in Nice?’ or ‘Does
Nice have a museum?’, to give only two of many possible phrasings.

In order to quantify the NL queries’ linguistic diversity, we are going to estimate
the entropy rate of NLMaps v2 by viewing it as the result of a source emitting
tokens t with a probability P(T = t). Shannon (1948) defines the entropy of the
random variable T as:

H(T ) = −
∑
t

P(T = t) log2 P(T = t) (3.1)

If a token’s emission probability P(T = t) depends on the previously emitted

5The impact of grammatical errors in generated queries (like the wrong use of ‘Is there’ with the
plural ‘Museums’) on the accuracy on real world queries will not be investigated. We assume
that occasional errors are alright or even beneficial, since slight grammatical (or orthographical)
errors will also occur in the real world.

17



3. NLMaps Data Improvement

where t h e a t e r s in Edinburgh
How many Doctor in Manchester
I s t h e r e Farm Shop in L i l l e
how many k i n d e r g a r t e n in Edinburgh
Garden Cen t r e s near Éco l e ma t e r n e l l e La Bruyère in L i l l e
I s t h e r e Museums in Nice
I s t h e r e c l o s e by Pu b l i c Bu i l d i n g from Bramley S t r e e t in Brad fo rd
I s t h e r e c l o s e by F i s h Shop from Wohldor fer S ch l e u s e in Hamburg in

↪→ walk ing d i s t a n c e
Where Fe r ry Termina l s near s ap in noe l in Nantes
How many Book Shop in Nice

Figure 3.4.: 10 random NLMaps v2 queries.

block b of n− 1 tokens as the manifestation of random variable B, the conditional
entropy is defined by

H(T |B) =
∑
b

P(B = b)H(T |B = b) (3.2)

= −
∑
b

P(B = b)
∑
t

P(T = t|B = b) log2 P(T = t|B = b) (3.3)

= −
∑
b

∑
t

P(B = b) P(T = t|B = b) log2 P(T = t|B = b) (3.4)

= −
∑
b

∑
t

P(B = b, T = t) log2 P(T = t|B = b) (3.5)

where P(B = b, T = t) = P(T = t|B = b) P(B = b) is the probability of
observing the n-gram (b, t). The probabilities can be estimated by observing the
trigrams (n = 3) in NLMaps v2 and we arrive at conditional entropies of 2.11 and
1.37 bits per token for the unmasked and masked variants, respectively.

By using more templates and templates that are not as rigid as the ones used for
NLMaps v2, a more diverse set of NL queries can be generated. We expect that the
conditional entropy of such a dataset will be increased.

3.1.5. Little variety in location names

Suspiciously, the NL sample of NLMaps v2 in Figure 3.4 contains the areas Edin-
burgh, Lille, Nice in two queries each. In fact, a closer look at the statistics of areas
in the dataset – built by extracting the values of name=* tags in the area operator
in all NLMaps v2 MRLs – reveals a large imbalance, as demonstrated by the graph
in Figure 3.5. The cities Heidelberg, Edinburgh and Paris appear over 3000 times
each, 28 cities appear around 500 times each, 50 other areas appear between once
and 65 times each – totalling only 81 different areas.

18



3. NLMaps Data Improvement

0 10 20 30 40 50 60 70 80
Areas (81 in total)

0

500

1000

1500

2000

2500

3000
A
re
a
U
sa
ge

Co
un

t

Figure 3.5.: Area names in NLMaps v2.

Some imbalance is also present in the values of name=* tags in the nwr operators,
which are mostly names of points of interests. However, the imbalance is much
less pronounced in this case and with 5969 different names there is a large variety
of different names. This is illustrated in Figure 3.6.

This lack of variety is not a problemwhen training on themasked data and using
an external NER system because the model will only ever see the placeholders for
the location names. However, models directly trained on NLMaps v2 will learn a
strong biaswith respect to location names, as evidenced by themodel hallucinating
the area Paris out of thin air as seen in Figure 3.1b. An improved version of the
dataset should provide a large variety of names, which should also stem from a
variety of different countries and languages.

3.1.6. Unnatural Wording of Queries

It is some queries’ purpose to extract the value associated with a certain key from
the result set, which is reflected in theMRL by operations like findkey('name') or
findkey('opening_hours) inside the qtype clause. This intention can be coded
in the NL query through wordings like ‘What are the names …?’, ‘Name all the …!’,
‘Tell me the opening hours …!’ or ‘When is … open?’.

19



3. NLMaps Data Improvement

0 1000 2000 3000 4000 5000 6000
Names (5969 in total)

0

50

100

150

200

250

N
am

e
U
sa
ge

Co
un

t

Figure 3.6.: Names in nwr operator in NLMaps v2.

This type of NL query is of course present in NLMaps v2, but there are also
queries which are simply prefixed by an OSM key, which is then understood as an
indication to extract that key via the the findkey operator. Five such queries are
shown in Figure 3.7. Some of them (such as ‘name Paris buy ice cream’) can pass
as crude wordings of legitimate queries.

whee l cha i r J ewe l r y Shops near München in walk ing d i s t a n c e
amenity c l o s e s t Gas S t a t i o n from Düs s e l d o r f
b i c y c l e Cyc le Pa ths in S h e f f i e l d
sou r c e Spo r t s Cen t r e s near B l akenha l e Road in Birmingham
name P a r i s buy i c e cream

Figure 3.7.: NL queries from NLMaps v2 where the OSM key that is to be extracted
is just added as a prefix.

Others are misleading or at least ambiguous. E.g., ‘wheelchair Jewelry Shops
near München in walking distance’ is understood as being equivalent to ‘Tell me if
the Jewelry Shops near München are wheelchair-accessible.’, whereas it could just as
well mean ‘Which Jewelry Shops near München are wheelchair-accessible?’, which
might even be the more likely query.

Some are actually nonsensical: Gas stations are selected via amenity=fuel in

20



3. NLMaps Data Improvement

the first place, so the amenity value will of course always be fuel; similarly for the
bicycle path example. And some keys are rarely worth asking for because they are
in general not interesting, such as the source key, which is used by OSM mappers
to give the information source used for mapping an object (e.g. aerial photography
or survey in person).

Paired with the lack of linguistic variety, this method of unnaturally prefixing an
otherwise complete NL query with an OSM key is actually harmful when queries
are encountered that start with unseen phrases. This is evidenced by the query
‘Showme the cafes near Martinskirche in Westheim’ in Figure 3.1a, where the model
attempts to extract the value of a nonsensical show:me key.

With the exception of somewhat reasonable cases like prefixing ‘name’, all of
these queries should be deleted from the dataset in order to improve it.

3.1.7. Improper Usage of OSM Tags

So far we have only discussed intrinsic qualities of NLMaps v2 by examining NL
and MRL queries and their consistency without paying heed to the usage of the
covered tags in the OSM database. This is of course important because the tags
only derive their meaning from their usage in the dataset. While most tags are
used correctly in NLMaps v2 (e.g. shop=clothes used in MRLs for queries asking
for ‘clothing stores’), there are also some tags that are not in current use in OSM,
have never been in use or their use differs from what they are understood to mean
in NLMaps v2. Most of these errors are inherited from the table discussed in Sec-
tion 3.1.2. Some examples are given:

• amenity=park6 is sometimes used inNLMaps v2, even though leisure=park
is the proper tag for parks. As of April 2021, amenity=park is used only 30
times in OSM.

• place=house has probably never had any usage in OSM, even though it is
used in NLMaps v2.

• Churches7 are places of Christian worship and can be identified by the tag
combination amenity=place_of_worship + religion=christian. How-
ever, NLMaps v2 uses building=church (and also historic=church), which
should be used for buildings built as churches. Theymay be used for another

6https://wiki.openstreetmap.org/wiki/Tag:amenity=park.
7https://wiki.openstreetmap.org/wiki/Church.

21

https://wiki.openstreetmap.org/wiki/Tag:amenity=park
https://wiki.openstreetmap.org/wiki/Church


3. NLMaps Data Improvement

purpose now8, while some non-church buildings may be used for holding
church services and are thus churches.9

Choosing the correct tag or tag combination is virtually irrelevant for training
the machine learning model, but it will obviously be essential when the MRLs are
actually used for an OSM lookup. Finer points of this multifaceted issue will be
discussed at a later point in this thesis.

3.2. Improving on NLMaps v2
Themost obvious way to produce a dataset that is closer to real world queries is to
source it from actual users via an annotation project. This is what will be described
later in this thesis. But in order to collect data efficiently, a model is helpful that
answers the simple questions correctly already, so that annotators will spend less
time constructing trivial MRLs. And even for more difficult queries, it’s easier to
adjust an MRL that is only slightly incorrect than one with several errors.

Therefore, it is reasonable to make an effort of improving on the existing NL-
Maps v2 dataset by fixing some of its shortcomings and by extending it with new
queries generated by an improved templating approach. These steps are described
in the following two sections.

3.2.1. Fixing NLMaps v2 Shortcomings

The fixing of shortcomings in the existing dataset concentrates on making it more
consistent. For reproducibility, all of the fixes are made in a script,10, which does
the following:

• OSM tags in the MRLs are replaced by non-deprecated counterparts or by
the union of all applicable tags, in some cases depending on the content of
the NL query. Cf. Sections 3.1.2 and 3.1.7. Examples:

– amenity=park → leisure=park

– landuse=forest → or(landuse=forest, natural=wood)

– NL asks for bars and MRL contains amenity=pub → amenity=bar

8The Hagia Sophia mosque in Istanbul may be the most famous example of this.
9The analogous situation of a non-religious building being used as a mosque is very common in

Germany, for example.
10https://gitlab.cl.uni-heidelberg.de/will/nlmaps-tools/-/blob/

handed_in/nlmaps_tools/fix_nlmaps_v2.py.

22

https://gitlab.cl.uni-heidelberg.de/will/nlmaps-tools/-/blob/handed_in/nlmaps_tools/fix_nlmaps_v2.py
https://gitlab.cl.uni-heidelberg.de/will/nlmaps-tools/-/blob/handed_in/nlmaps_tools/fix_nlmaps_v2.py


3. NLMaps Data Improvement

Split NLMaps v2 Modified Deleted NLMaps v2.1

Train 16 172 1236 1059 15 113
Dev 1843 136 109 1734
Test 10 594 796 691 9903

Total 28 609 2168 1859 26 750

Table 3.2.: Numbers of deletions and modifications going from NLMaps v2 to NL-
Maps v2.1.

• The operator area in a center clause without an nwr operator is replaced
by the nwr operator. Cf. Section 3.1.3.

• NL-MRL pairs where an OSM tag was used as the prefix of the NL query
to indicate a matching findkey operator are removed with the exception of
the keys name, opening_hours and website. Cf. Section 3.1.6.

By applying these changes to NLMaps v2, 2168 MRLs are modified and a further
1859 instances are deleted resulting in a modified dataset containing 26 750 NL-
MRL pairs, which will be called NLMaps v2.1. More detailed numbers are given in
Table 3.2. Note that the NL side of queries is never modified in the process.

3.2.2. Extension of NLMaps v2

In order to address also the other shortcomings, a new dataset is generated in a
more sophisticated templating approach. The new approach differs by the one
used for NLMaps v2 in the following ways:

• More templates are used.

• There is significant variation within each template.

• More area names are used.

• Area names are more evenly distributed.

• More OSM tags are used. For this, the information from the table used for
NLMaps v2 is manually extended.

• Errors in the tag usage (as discussed in Sections 3.1.2 and 3.1.7) are of course
avoided in the first place.

23



3. NLMaps Data Improvement

when

{{ choose(['can I', 'can we', 'to'], [0.3, 0.3, 0.4]) }}

{{ choose(['visit', 'go to'], [0.6, 0.4]) }}

{% if plural %}

{{ choose(['the', 'all', 'all the', ''], [0.2, 0.2, 0.2, 0.4]) }}

{% else %}

{{ choose(['a', 'some', 'any', '']) }}

{% endif %}

{{ thing_plural if plural else thing_singular }}

{% include 'meta/in_location.jinja2' %}

{{ optional('?') }}

Figure 3.8.: Simple template for one version of queries for opening hours.

The templates are designed to be probabilistic. I.e., instead of being rigid, they
are essentially decision trees with various decisions being made to arrive at the
final wording of an NL query. Figure 3.8 shows one of several templates used for
generating queries that ask for opening hours. By choosing phrases according to
the given probability distributions, it can produce queries like ‘when to visit theatres
in Bratislava?’ or ‘when can I go to a cinema in Hannover’. The resulting dataet is
called NLMaps v3a.

The location names are collected via extracting all areas and named places from
different regions in countries that use variations of the Latin alphabet. This is done
to ensure that location names from various languages are included in the dataset.11

Figure 3.9 shows a large variety in well-distributed area names. This is in contrast
with the situation in NLMaps v2 shown in Figure 3.5.

In order to train models that are robust against typing errors and other small
spelling deviations, some noise is added to theNL queries inNLMaps v3a by switch-
ing a character for another with a chance of 1 %. Names of locations are never
touched, however. The resulting dataset with noise is called NLMaps v3b and a
random sample of NL queries is shown in Figure 3.10.

Finally, we concatenate NLMaps v2 and NLMaps v3b and call the result NL-
Maps v3. Since we generate exactly as many instances for NLMaps v3b as are
present in the corresponding split of NLMaps v2.1, NLMaps v3 is exactly twice as
large as NLMaps v2.1.

The linguistic diversity of the resulting datasets is quantified by the entropy rate
estimated by the conditional entropy on trigrams, as described in Section 3.1.4.

11When generating a query for things around some named place inside an area, both the place
and the area are randomly selected independently from each other. This leads to queries like
‘restaurants near Eiffel Tower in Rome’, which do not make sense in practice because there is no
Eiffel Tower in Rome, but that doesn’t matter since the model is just supposed to learn to copy
the names to the appropriate place in the MRL.

24



3. NLMaps Data Improvement

0 5000 10000 15000 20000
Areas (23477 in total)

1

2

3

4

5

6

7

8

9

A
re
a
U
sa
ge

Co
un

t

Figure 3.9.: Area values in NLMaps v3a.

Table 3.3 offers an overview over the datasets.

Measure v2 v2.1 v3a v3b v3

Instances 28 609 26 750 53 500 53 500 53 500
Conditional Entropy 2.11 2.08 2.85 2.93 2.73
Avg. Tokens per NL 6.98 7.02 10.72 10.69 8.85

Table 3.3.: Comparison of dataset statistics. Entropy rates are estimated by the
conditional entropy trigrams.

25



3. NLMaps Data Improvement

what bathrooms in Z á l u ž í a r e around Zur S töpe ?
what p r e s c h o o l s in Sadek a r e in walk ing d i s t a n c e hrom Gasthaus

↪→ Tannengarten ?
Do some v e t e r i n a r y s u r g e r i l s e x i s t e a s t o f s tudna in Montgeron (

↪→ canton de D r a v e i l )
G i r e me any depar tment s t o r e around ROBOT in Neue Vahr Südos t
which s e t v i c e ro sd in Ba r d z i c e i s south o f Le C i r é Jaune ?
show me the opening t imes o f a l l the monora i l i n the a r ea o f The

↪→ KPH in Św i e c i e
Which v i ewpo in t i s t h e r e in Miño de San Es teban ?
In Grabowiec , what a r e the opening hours o f a l l the boa t y a r d s l e s s

↪→ than 80 k i l ome t r e s away from MakroMueble
I n d i c a t e the coo r d i n a S e s o f a l l byways Tn p ř í r o d n í památka

↪→ Branžovy .
Are t h e r e parks e a s t o f T ige ry ?

Figure 3.10.: 10 random NLMaps v3b queries.

26



4. Web Interface

The model is exposed via a new web interface, which enables a user to enter an
NL query. The NL query is then parsed into the MRL query, which is presented to
the user. Additionally, the MRL is interpreted by a newly written MRL interpreter,
which retrieves the requested information from OSM via queries to the Overpass
API and Nominatim. The result is then presented on an interactive OpenLayers1

map and also as a textual answer if applicable. (It doesn’t make much sense to give
coordinates as a textual answer, for example.)

If the user notices that the presented MRL is incorrect, they have the option to
correct it. To facilitate correcting the MRL, the user is supported by automatic tag
suggestions powered by TagFinder2 (Gwerder 2014) and also fixed custom sugges-
tions for tricky cases, both of which are based on keywords extracted from the NL
query. Additionally, the MRL is corrected via a web form that abstracts away the
details of the MRL syntax so that the user doesn’t have to understand that and can
also not make any simple mistakes like not closing parentheses.

Finally, the user can tell the system that an MRL query is correct when they
are satisfied with it. The new NL-MRL pair is saved and is also directly used for
improving the system by online training.

The screenshots in Figure 4.1 show the typical flow from the user’s perspective
when the query is successfully parsed and those in Figure 4.2 show the flow for a
flawed MRL and its correction.

4.1. Architecture
Instead of being one large system, NLMaps Web is split into two parts: First, the
web interface the user interacts with, which also includes usermanagement, giving
tag help, displaying answers, logging queries and a tutorial. Second, the parsing
server that parses NL queries intoMRL queries, trains and updates themodel based
on feedback received through theweb interface and also stores that feedback. They

1Schaub et al. (OpenLayers). https://openlayers.org/.
2Gwerder (OSM TagFinder ). https://tagfinder.herokuapp.com/.

27

https://openlayers.org/
https://tagfinder.herokuapp.com/


4. Web Interface

are separated so that the machine that runs the web server is not required to also
handle running or even training a neural network, which is a resource-intensive
task that is usually parallelized on a GPU. Due to the separation, it is possible to
use a small machine for the web interface that interacts with the parsing server
running on a GPU cluster, which may only be accessible by SSH and thus be un-
reachable through a well-known HTTP port.

Both systems are implemented as HTTP Servers with the Python web frame-
work Flask3 and employ SQLite4 as their database. The parsing server exposes a
JSON-based HTTP API, which is used by the web interface. For handling the ma-
chine translation training and predicting, it wraps the PyTorch5-based sequence-
to-sequence learning framework Joey NMT6 (Kreutzer, Bastings, et al. 2019).

Figure 4.3 shows the basic querying flow through the architecture: The user
enters their NL query into the web interface, which calls on the parsing server to
parse it into an MRL.TheMRL is used to retrieve the answer via the MRL interpre-
tation package (cf. Section 4.2) and the web interface sends the MRL query along
with the retrieved answer in its response to the user.

As shown in Figure 4.4, the web interface also extracts the keywords from the
NL query (cf. Section 4.3) and suggests tags based on them. With this information,
the user can correct the MRL if it is wrong and can send their feedback in the form
of a correct NL-MRL query pair to the web interface. The feedback is then sent
to the parsing server in order to initiate the training procedure and to update the
model.

4.2. MRL Interpretation
In the course of their foundational work, Haas and Riezler (2016a) forked7 the
Overpass API and included functionality for reading an MRL query and executing
the Overpass QL queries necessary to answer it. Unfortunately, there are three
problems with this approach.

• Their fork has been unmaintained for years and thus does not profit from
further development and bugfixes in the upstream Overpass API project.
Merging the upstream bugfixes and other changes and maintaining the fork
would mean a lot of ongoing work.

3Pallets Projects (Flask). https://palletsprojects.com/p/flask/.
4Hipp et al. (SQLite). https://sqlite.org/.
5Facebook Inc. (PyTorch). https://pytorch.org.
6Kreutzer, Bastings, et al. (Joey NMT ). https://github.com/joeynmt/joeynmt.
7Lawrence (Overpass NLmaps). https://github.com/carhaas/overpass-nlmaps.

28

https://palletsprojects.com/p/flask/
https://sqlite.org/
https://pytorch.org
https://github.com/joeynmt/joeynmt
https://github.com/carhaas/overpass-nlmaps


4. Web Interface

• Running an instance of the Overpass API entails having a complete copy of
OSM data stored in the Overpass database and keeping it up to date, which
also is a lot of work.

• The Overpass API is meant for precise queries to the OSM database and has
no functionality for fuzzy matching of place names8 or for ranking results
by importance. These are typical cases where this becomes a problem:

– The user asks ‘Show Verpackungsmuseum in Heidelberg’ and the parser
correctly analyzes that the user wants a place called Verpackungsmu-
seum. However, the Overpass API will not find such a place because
that museum is in fact called Deutsches Verpackungsmuseum.

– The user asks for objects in Paris, but there are several cities with that
name in the world and the Overpass API has no importance ranking
with which it could determine that the capital of France is most likely
the city the user has in mind.

Instead of using the forked version for answering MRLs, we develop a Python
module for that task whose manner of operation is explained here. In a first step,
the area requested in the query is looked up in Nominatim, which supports fuzzier
search than the Overpass API and also ranks the results by an importance score.
Second, the named reference location is looked up if there is one in the query (e.g.
Eiffel Tower in ‘bars near Eiffel Tower in Paris’). This is also done via Nominatim
and the results are restricted to the area that was selected in the previous step.
Finally, an Overpass QL query is generatedwhere the previously retrieved area and
reference location are selected by their OSM ID instead of their name. This query
is then sent to any of the publicly available Overpass API instances for retrieving
the result, which means that there is no need of running a separate instance of the
API with all the maintenance work.

4.3. NL Query Keyword Extraction
In order to suggest tags for the user to use when correcting a faulty MRL query, the
most relevant keywords are extracted from their NL query so that the keywords
can be looked up in the TagFinder. Assuming that a relevant keyword is a term
occurring in that query that does not occur in a lot of other queries, we turn to
tfidf for ranking the terms.

8Regular expressions are supported, but they do not suffice for this task.

29



4. Web Interface

For a term t in an NL query d, its tfidf score is calculated as

tfidf(t, d,D) = tf(t, d)× idf(t,D) (4.1)

where the collection of all NL queries in NLMaps v3 is used as the reference docu-
ment setD. The term frequency tf(t, d) is the raw count of term t in the NL query
d and the inverse document frequency is calculated as

idf(t,D) = ln
N + 1

df(t,D) + 1
+ 1 (4.2)

whereN = |D| is the number of NL queries inD and df(t,D) = |{d ∈ D : t ∈ d}|
is the number of NL queries containing the term t. 1 is added in the numerator
and in the denominator for smoothing over unseen terms and a further 1 is added
in order not to completely disregard terms that occur in every NL query.

Any termswith a score tfidf(t, d,D) > 0.3 (the cutoffwas determinedmanually)
are looked up in TagFinder except if they occur in a separate list of stop words or
if they are part of a location name, which is determined by using the MRL query
predicted by the parser.

4.4. Online Learning
In interactive machine translation or other human-in-the-loop learning processes,
it is often assumed that there is only one user and the interaction process is strictly
sequential: The system makes a prediction and then waits for the human to make
a post-edit or to give some other kind of feedback. As soon as it receives the
feedback, it immediately updates the model parameters and is then ready to make
another prediction. However, this process breaks down in a multi-user setting
since a user can send feedback when the model is still in the process of updating its
parameters on some other user’s feedback. One could resolve this by providing one
model per user that will only update based on their corresponding user’s feedback,
but this would mean that a user will not benefit from other users’ feedback, which
is undesirable. On top of that, maintaining a separate model for each user quickly
becomes costly in practice.

Therefore, we use an asynchronous learning setup – formalized in Algorithm 1
–, where the MT server permanently runs a dedicated process for updating the
model. It runs a loop that detects if any fresh feedback is present in the list F . If
this is the case, it goes through all instances in F creating batches that can also
include instances from a fixed training set (e.g. the training set the model was

30



4. Web Interface

pre-trained on) and instances that are memorized from feedback that has already
been processed in the past. On these batches, the process then makes gradient
descent updates of the model parameters. While the process is running the update
procedure, users can still use the system and give feedback, which is added to F
and will be processed by the update process in the next iteration of the loop.

Algorithm 1 Asynchronous Online Learning
1: procedure AsynchronousOnlineLearning(θ, F ,M, T , nF , nM , nT , I)
2: θ: Model parameters
3: F : List of fresh MRL-NL feedback
4: M: Set of memorized older MRL-NL feedback
5: T : Set of MRL-NL pairs from pre-training
6: nF : Instances from F per batch
7: nM : Instances from M per batch
8: nT : Instances from T per batch
9: I : Iterations per fresh feedback

10: loop
11: if |F| > 0 then
12: F ′ ← Copy F
13: F ← Empty list . Users can add to F without affecting F ′

14: for i← 1 . . . I do
15: for offset← 0 . . .

⌊
|F ′|
nF

⌋
do

16: . Go through F ′ in nF -sized batches
17: bF ← F ′[offset] . . .F ′[offset+ nF − 1]
18: bM ← Sample nM instances fromM
19: bT ← Sample nT instances from T
20: b← Concatenate batches bF , bM , bT
21: Update parameters θ on batch b
22: end for
23: end for
24: Add all instances in F ′ toM
25: end if
26: end loop
27: end procedure

31



4. Web Interface

(a) User enters NL query.

(b) Info about MRL query the parser produced.

(c) Answer of the query.

(d) Interactive map of the results.

Figure 4.1.: Successful query process with the NL query ‘Which are the opening
times of places in Heidelberg to buy outdoor equipment?’.

32



4. Web Interface

(a) MRL Info missing the amenity=restaurant tag.

(b) Help for the user showing tags with similar spelling, custom suggestions for the key-
word greek and TagFinder suggestions for restaurant.

(c) Form where the user added amenity=restaurant.

Figure 4.2.: MRL correction process after asking ‘Is there any greek restaurant in
Timbuktu?’.

33



4. Web Interface

Figure 4.3.: System Architecture for Querying.

Figure 4.4.: System Architecture for Feedback and Learning.

34



5. Experiments

Our goal is simulating different strategies of online learning for the newweb inter-
face. Before we can do that, we first pre-train parsers in Section 5.1 on the existing
datasets NLMaps v2 and the variations we introduced in NLMaps v3 and evaluate
whether the dataset extensions yield any improvement in parser quality. In Sec-
tion 5.2, we then hire annotators to use our web interface to ask NL queries and
correct the MRL parse if it is incorrect, thus collecting a new dataset consisting
of real user queries. Finally, in Section 5.3 we use the newly acquired dataset for
evaluating various online learning setups.

For all our experiments, we use the same model architecture: A character-based
one-layer bidirectional GRU encoder-decoder (Cho et al. 2014) model with atten-
tion(Bahdanau et al. 2015). The dimension of both source and target embeddings
is 620, the encoder layer size is 500, the decoder layer size is 1000 and we don’t use
dropout. This model configuration is adopted from Staniek (2020).

5.1. Training on NLMaps v2 and NLMaps v3
While Staniek (ibid.) trained his model on the NLMaps v2 dataset for 100 epochs (of
16 172 instances each), we train our models in this section for a shorter time, which
is still enough for sufficient convergence: The model on NLMaps v2.1 is trained for
60 epochs (of 15 113 instances each), while the models on variations of NLMaps v3
are trained for 30 epochs (of 30 226 instances each). All models are trained with
the Adam optimizer (β1 = 0.9 and β2 = 0.999) and a learning rate of 0.0002.

Table 5.1 shows the results of testing the models on the different variations of
NLMaps datasets. Recall: v2.1 is the result of fixing issues in theMRL queries of v2,
but has identical NL queries; v3a is purely generated with probabilistic templates
and v3b is its counterpart with added noise; v3no-noise is v2.1 + v3a and v3 is v2.1
+ v3b. The datasets v4raw and v4 are introduced in Section 5.2 and are the user-
supplied MRL-NL pairs with some corrections applied to them in v4. Even though
the last two datasets were not yet available when the models were pre-trained, we
still evaluate the pre-trained models on them in this section because we consider

35



5. Experiments

the results on these user-supplied queries the most relevant.

Train
Test v2 v2.1 v3a v3b v3no-noise v3 v4raw v4

Staniek (2020) 0.898 0.844 0.039 0.033 0.441 0.439 0.050 0.052
v2.1 0.783 0.913 0.034 0.029 0.474 0.471 0.070 0.069
v3a 0.224 0.251 0.987 0.789 0.618 0.519 0.217 0.223
v3b 0.372 0.424 0.976 0.884 0.700 0.656 0.226 0.233
v3no-noise 0.790 0.919 0.978 0.792 0.948 0.857 0.307 0.311
v3 0.787 0.913 0.950 0.834 0.931 0.874 0.281 0.289

Table 5.1.: Performance of pre-trained parsers.

Unsurprisingly, the model by Staniek (2020), which was trained on NLMaps v2,
performs best on the corresponding test set with an accuracy of 89.8 %. The model
trained on v2.1, which contains the fixes of tag usage and inconsistencies described
in Chapter 3, achieves a higher accuracy on its corresponding test set with 91.3 %.
This is to be expected since the resolution of inconsistencies in MRL structure and
tag usagemakes a new part of the dataset accessible for confident predictions in the
first place. These two models’ performance drops dramatically on new datasets.
An error analysis (see Figure 5.1) shows that not only does the model trained on
v2.1 make an error in the target_nwr operator in over 70 % of queries from the
NLMaps v4 test set, the recognized area is false in more than half the queries, as
well.

0.2 0.4 0.6 0.8 1.0
Percentage

qtype

around_topx

maxdist

target_nwr

center_nwr

area

structure

Figure 5.1.: Percentage of queries with an error in a specific operator. The model
was pre-trained on NLMaps v2.1 and tested on NLMaps v4.

36



5. Experiments

The models trained on the purely synthetic training sets of v3a and v3b achieve
an extremely high accuracy of around 98% on the test set of v3a. Themodel trained
on the non-noisy v3a turns out to be less robust on the noisy v3b test set with a
performance drop of almost 20 % whereas the accuracy of the model trained on
v3b only drops by around 9%. More interestingly, the v3b model significantly out-
performs the v3a model on the v2.1 test set, as well, which suggests that the added
noise serves as a means of regularization and avoids overfitting on the synthetic
queries. When confronted with the real queries in NLMaps v4, both models’ ac-
curacy again drops starkly to around 23% – with the noisy model still performing
slightly better than its non-noisy counterpart. As shown in Figure 5.2, the im-
provement with respect to the model trained on v2.1 is mostly due to the greater
variety of location names (cf. Section 3.1.5), which significantly reduces the num-
ber of errors in the area and center_nwr operators. The main source of errors
remains choosing an incorrect set of OSM tags in the target_nwr operator.

0.2 0.4 0.6 0.8 1.0
Percentage

other

qtype

around_topx

maxdist

target_nwr

center_nwr

area

structure

Figure 5.2.: Percentage of queries with an error in a specific operator. The model
was pre-trained on NLMaps v3b and tested on NLMaps v4.

Combining v2.1 and the new synthetic data from v3a or v3b yields further im-
provement as evidenced by the performance of the models trained on v3no-noise and
v3. They performwell on v2.1 as well as on the variations of v3, but the accuracy on
the noisy versions is still noticeably smaller than on their non-noisy counterparts.
While the comparison of the two models trained on v3a and v3b showed a clearly
superior performance of the model trained on the noisy data in all variations of v2
and v3 except v3a, this is not observed when comparing the two models trained
on v3no-noise and v3. Instead, they have a similar accuracy on all test sets with the

37



5. Experiments

model trained on v3no-noise being slightly superior on the non-noisy datasets and
the model trained on v3 being slightly superior on the noisy ones. Testing on the
real user queries from v4 reveals that the model trained on the non-noisy data
actually performs better in the end. However, since v4 was not available during
the pre-training phase, at that point the two models seemed comparable and our
assumption was that the model trained on v3b would prove more robust against
typing errors.

0.2 0.4 0.6 0.8 1.0
Percentage

other

qtype

around_topx

maxdist

target_nwr

center_nwr

area

structure

Figure 5.3.: Percentage of queries with an error in a specific operator. The model
was pre-trained on NLMaps v3 and tested on NLMaps v4.

Figure 5.4 shows the models’ learning curves on the development set of v3 dur-
ing pre-training. While all models converge fairly quickly, it can be seen that the
model trained on v2.1 converges somewhat faster than the other models. This
might again be due to the simpler location names, which can be memorized by the
model, while the other models have to learn to copy arbitrary location names –
including some that are very long or contain rare characters.

5.2. Annotation for New Dataset
Training and evaluating useful NLMaps models without having a dataset of actual
user queries is problematic. For this reason, an annotation experiment is con-
ducted, during which several people use our web interface presented in Chapter 4
to issue new NL queries. They are tasked to confirm the model’s predicted MRL
query if they deem it correct or to correct it if they consider it false. Before be-
ginning the task, the annotators complete a tutorial, which explains the basics of

38



5. Experiments

0 20000 40000 60000 80000
Steps

0

20

40

60

80
N
LM

ap
sv

3
D
ev

A
cc
ur

ac
y

Trained on v2.1
Trained on v3a
Trained on v3b
Trained on v3
Trained on v3no-noise

Figure 5.4.: Learning curves on the development set of NLMaps v3.

OSM, the capabilities of the MRL language and the usage of the web interface.
The call for participation in the annotation study was distributed through vari-

ous OSM-typical channels including the talk mailing list1 and the OSM subreddit2,
which yielded the highest response. Albeit slightly eurocentric, the participants
stem from a reasonably diverse set of countries and have diverse native languages.
In contrast, all of the acquired annotators report their gender as male, which is
reflective of the overall OSM demographic since only between 2% and 5% of OSM
contributors are estimated to be female (Budhathoki 2010; Stark 2010; Lechner
2011; Schmidt and Klettner 2013; Das et al. 2019). This is problematic as it has the
potential to lead to a bias in the dataset. In future annotation projects, this effect
should be mitigated by targeted advertising in female mapping communities such
as GeoChicas.3

The annotation guidelines explain to the annotators that their queries should be
linguistically diverse, cover a large part of OSM tags and cover more useful tags in
more detail. To ensure that the annotators sufficiently cover the most important
tags, we choose a set of tags (e.g. amenity=cafe and wheelchair=yes) and keys

1OSM Mailing List talk. https://lists.openstreetmap.org/listinfo/talk.
2Subreddit r/openstreetmap. https://www.reddit.com/r/openstreetmap.
3GeoChicas. https://wiki.openstreetmap.org/wiki/GeoChicas.

39

https://lists.openstreetmap.org/listinfo/talk
https://www.reddit.com/r/openstreetmap
https://wiki.openstreetmap.org/wiki/GeoChicas


5. Experiments

#Annotations Nationality Native Language OSM Experience Gender

442 Poland Polish Extensive Male
414 Germany German Extensive Male
405 Turkey Turkish Medium Male
404 UK English Medium Male
404 Hungary Hungarian Extensive Male
400 India Hindi Little Male
400 Turkey Turkish Little Male
393 Germany German Little Male
318 Germany German Extensive Male
253 Brazil Portuguese Little Male
253 Nepal Nepalese Extensive Male
26 Philippines English, Filipino, Cebuano Extensive Male
40 Various untracked people without login

Table 5.2.: Information about annotators. Everything but the number of annota-
tions is self-reported by the annotators.

(e.g. shop and leisure) for which each annotator must issue a minimum num-
ber of queries. See the full guidelines in Appendix B for details. The annotators
can monitor their annotation progress via an overview page in the web interface,
which is shown in Figure 5.5.

During the annotation, the parser model used by the web interface is initially
the model from Section 5.1 that is pre-trained on NLMaps v3. Due to technical
problems however, no systematic online learning happened throughout the anno-
tation experiment because of various crashes. The result is a dataset where the
annotators made their corrections based on predictions made by a model that had
learned from some, but not all annotations.

In total, the annotators issued 4152 NL queries. For 92 of those, they could not
give an MRL, mostly because the queries were not expressible by an MRL query
(e.g. ‘cities without hospitals in Poland’), leaving 4060 NL-MRL pairs. Since Staniek
(2020) correctly criticized that NLMaps v2 has queries in its development and test
sets that appear identically in the training set if location names are masked (cf.
Section 3.1.1), we identify such sets of identical queries in the remaining 4060 NL-
MRL pairs and delete all but one in each set, which leaves 3773 NL-MRL pairs.

Furthermore, we observe that users tend to reuse the same areas many times.
E.g., a user from Istanbul will ask lots of questions about Istanbul, which leads
to the problem of lacking variety in location names that was already identified
as a problem in Section 3.1.5. In order to avoid this problem in our new dataset,
the web interface automatically replaces a location name (anything with OSM tag
name=*) if it has occurred three or more times in that user’s queries already. The

40



5. Experiments

Figure 5.5.: Overview of an annotator’s annotation progress.

original query is of course saved separately, as well. The location names used for
replacement are selected from the same large list of areas and points of interest that
is also used for generating the NLMaps v3 dataset. The resulting dataset of 3773
NL-MRL pairs with replacement of some location names is called NLMaps v4raw.

Finally, we notice some errors in the MRLs the annotators created. E.g., for the
NL query ‘show me restaurants with limited wheelchair access in gmina Piaseczno’,
the annotated MRL query erroneously uses qtype(findkey( 'wheelchair'))

(which informs about the wheelchair accessibility status of returned objects) in-
stead of actually selecting for wheelchair status by using keyval('wheelchair',

'limited') in the nwr operator. Similar queries by the same annotator where they
didn’t make that mistake show that they understood the issue and may just have
been unconcentrated in this case. Other examples include using diet=chinese in-
stead of cuisine=chinese or shop=fuel instead of amenity=fuel, both of which
can be attributed to a lack of concentration, which is not surprising in a repetitive
annotation task.

Besides these obvious errors, there is a separate and more frequent issue with
ambiguous NL queries. E.g., the NL query ‘count the fireplaces in the Naturpark
Schönbuch’ is annotated to select objects tagged as keyval('leisure','firepit'),

41



5. Experiments

which ignores fireplaces that are mapped with the key fireplace=yes on picnic
sites. Another annotator issues a similar NL query, but creates an MRL which
selects objects tagged as or(keyval('fireplace','yes'), keyval('leisure',
'firepit')). While the second query is more inclusive and overall more fitting
for the NL query, there is a valid reason to exclude fireplace=yes: It can also
be used on wilderness huts to indicate that they feature an indoor fireplace, which
may not be what the user has in mind. This is one of numerous cases where it is
not at all obvious what the correct MRL query for an NL query should be.

Since our goal is creating a dataset that is as useful as possible for training an
NLMaps model which makes sensible and consistent predictions, we fix the obvi-
ous errors and we also adjust MRLs where there are divergingMRL interpretations
for similar NL queries in the dataset. This is judged by the author SimonWill based
on the MRLs created by all the annotators. As a result of this resolution, 377 MRLs
of the 3773 instances are modified to create the dataset called NLMaps v4.

Both v4raw and v4 are split into training, development and test sets containing
2264, 754 and 755 instances respectively. Table 5.3 compares the new datasets
with v2.1 and v3b and shows that the user queries are actually shorter and have a
smaller entropy rate than the queries generated by our probabilistic templates.

Measure v2.1 v3b v4raw/v4

Instances 28 609 53 500 3773
Conditional Entropy 2.11 2.93 2.68
Avg. Tokens per NL 6.98 10.69 8.37

Table 5.3.: Comparison of dataset statistics. Entropy rates are estimated by the
conditional entropy trigrams.

Probably due to the influence of the annotation guidelines, the most common
tags inNLMaps v4 are wheelchair=yes, amenity=restaurant and amenity=cafe,
which are used in over 100 queries each. What makes the dataset especially chal-
lenging, is the long tail of rarely used tags: 310 tags are used only once and 489
are used at most three times. Figure 5.6 reveals two insights about how the tag
distribution in NLMaps v4 compares to that of the previous datasets: The syn-
thetic nature of NLMaps v3b and the larger part of NLMaps v2.1 makes it feasible
to generate an arbitrary number for each tag, which is of course not possible when
manually issuing queries. At the same time, the manual processs is more creative
resulting in a larger number of different tags. Note that even though the number
of instances in NLMaps v4 is only 7 % of that in NLMaps v3, it still contains 1.3
times as many different tags.

42



5. Experiments

In conclusion, the annotation process was unfortunately only done by male par-
ticipants and the question of how to handle diverging MRL queries for similar NL
queries deserves further research. Nevertheless, the result is a challenging dataset
with a large number of tags and more real user queries than any of the previous
NLMaps datasets.

0 100 200 300 400 500 600 700 800
Tag Index

100

101

102

103

Ta
g
U
sa
ge

Co
un

t

NLMaps v2.1
NLMaps v3b
NLMaps v3
NLMaps v4

Figure 5.6.: Tag distribution in different NLMaps datasets.

5.3. Online Learning Simulation
In this section, we train various models on the new NLMaps v4 dataset and inves-
tigate which learning setup is best suited for online learning in the web interface.
The model trained on the large NLMaps v3 dataset is used as a starting point for
all models in this section.

First, we establish an upper boundary for the fine-tuning on v4 in a regular
batch-based offline learning experiment. In the setup called v3 → v4 in Table 5.4
the model is fine-tuned on v4 for 20 epochs with a batch size of 10. While that
model achieves significant accuracy gains on v4, its performance on the old dataset
v3 drops starkly. Therefore, another model is trained for 20 epochs (of v4) with
batches made up of 5 instances from v4 and 5 instances of v3. This model achieves

43



5. Experiments

the highest accuracy on v4 in this thesis: 58.8 %. The learning curve shown in
Figure 5.7 shows that the performance on v3 remains fairly stable throughout the
training while the performance on the new v4 is improved. Figure 5.8 shows that
errors are still predominantly caused by selecting the wrong tags to query for, even
though the tag error rate is greatly reduced with respect to the pre-training model
(compare Figure 5.3).

88000 89000 90000 91000 92000 93000 94000 95000 96000 97000
Steps

0

20

40

60

80

100

A
cc
ur

ac
y

Accuracy on v4 Dev
Accuracy on v3 Dev
Starting Accuracy on NLMaps v4 Dev

Figure 5.7.: Learning curve of model pre-trained on NLMaps v3 and fine-tuned on
a mix of NLMaps v3 and NLMaps v4.

The next experiment is a simulation of online learning: The model trained on
NLMaps v3 is fine-tuned on NLMaps v4 by making one pass through the v4 train-
ing set and performing one gradient descent step per instance. In the 1-0-0 variant
of the experiment, the “minibatch” for calculating the gradient consists of only this
instance. In the 1-0-5 variant, 5 instances sampled from NLMaps v3 are added to
the minibatch. In the 1-0-5 variant, a further 4 instances sampled from the part
of v4 seen at that point are added to the minibatch, which means that the mini-
batches consist of 5 instances from v3 and 5 instances from v4, just like in the
previous offline experiment. Another variation of the experiment is iterating five
times instead of once for each instance in v4, which is indicated by the “Iter: 5” in
Table 5.4. Note that while the one instance is used in all five iterations in this case,

44



5. Experiments

0.2 0.4 0.6 0.8 1.0
Percentage

qtype

around_topx

maxdist

target_nwr

center_nwr

area

structure

Figure 5.8.: Percentage of queries with an error in a specific operator. The model
was pre-trained on v3, fine-tuned on v3 and v4 and tested on v4.

the other samples change with each minibatch. The exact meaning of these four
parameters nF , nM , nT and I is described more formally in Algorithm 1 at the end
of Chapter 4.

Since previous work suggests that Adadelta performs as well as (Peris, Cebrián,
et al. 2017) or even better than (Turchi et al. 2017; Peris and Casacuberta 2019)
Adam for online learning on single instances, the first experiments are conducted
using Adadelta with the learning rate set to 0.01 as done by Peris and Casacuberta
(2019). The results show that the simple 1-0-0 variant increases the accuracy on v4
by over 10 %, but at the same time the accuracy on v3 degrades by 10 %. Adding
instances sampled from v3 to the minibatch almost eradicates this problem, but
also impedes adaptation as evidenced by an increase of accuracy on v4 by only 7 %.
Adding further memorized v4 instances in the 1-4-5 variant evidently rectifies this
problem. By performing 5 iterations per instance, the accuracy on v4 can even be
increased by 15% with respect to the pre-trained model.

Substituting Adam (again with a learning rate of 0.0002) for Adadelta yields little
improvement in the 1-0-0 variant. In fact, there is an extreme decrease in accuracy
to only 55.2 % on the original v3 data, which is illustrated well in the learning curve
in Figure 5.10. Again, adding the v3 instances to the batch alleviates this problem,
but not as effectively as with Adadelta. However, this stabilization helps the Adam
1-0-5 variant to reach an v4 accuracy of 45.0 %, significantly outperforming its
Adadelta counterpart. The memory of previous v4 instances further increases the
accuracy to 51.0 %. Performing 5 iterations per instance yields another accuracy

45



5. Experiments

88000 88500 89000 89500 90000
Steps

30

35

40

45

50

55

60

N
LM

ap
sv

4
D
ev

A
cc
ur

ac
y

v4 Adadelta 1-0-0 Iter: 1
v4 Adadelta 1-0-5 Iter: 1
v4 Adadelta 1-4-5 Iter: 1
v4 Adam 1-0-0 Iter: 1
v4 Adam 1-0-5 Iter: 1
v4 Adam 1-4-5 Iter: 1
v4raw Adam 1-4-5 Iter: 1
Starting Accuracy
Top Accuracy of Offline Training

Figure 5.9.: Learning curve on development set of NLMaps v4 during online simu-
lation with one iteration per instance.

88000 88500 89000 89500 90000
Steps

50

55

60

65

70

75

80

85

90

N
LM

ap
sv

3
D
ev

A
cc
ur

ac
y

v4 Adadelta 1-0-0 Iter: 1
v4 Adadelta 1-0-5 Iter: 1
v4 Adadelta 1-4-5 Iter: 1
v4 Adam 1-0-0 Iter: 1
v4 Adam 1-0-5 Iter: 1
v4 Adam 1-4-5 Iter: 1
v4raw Adam 1-4-5 Iter: 1
Starting Accuracy

Figure 5.10.: Learning curve on development set of NLMaps v3 during online sim-
ulation with one iteration per instance.

46



5. Experiments

Train
Test v2.1 v3no-noise v3 v4raw v4

v3 0.913 0.931 0.874 0.281 0.289

v3 → v4 0.836 0.852 0.792 0.518 0.554
v3 → v3/v4 0.914 0.923 0.865 0.548 0.588

v3 → v4 Adadelta 1-0-0 Iter: 1 0.817 0.835 0.774 0.376 0.391
v3 → v3/v4 Adadelta 1-0-5 Iter: 1 0.911 0.927 0.871 0.354 0.366
v3 → v3/v4 Adadelta 1-4-5 Iter: 1 0.905 0.924 0.866 0.381 0.396
v3 → v3/v4 Adadelta 1-4-5 Iter: 5 0.912 0.930 0.871 0.430 0.448

v3 → v4 Adam 1-0-0 Iter: 1 0.565 0.601 0.552 0.384 0.397
v3 → v3/v4 Adam 1-0-5 Iter: 1 0.886 0.907 0.847 0.430 0.450
v3 → v3/v4 Adam 1-4-5 Iter: 1 0.887 0.901 0.841 0.486 0.510
v3 → v3/v4 Adam 1-4-5 Iter: 5 0.859 0.827 0.774 0.499 0.530

v3 → v3/v4raw Adam 1-4-5 Iter: 1 0.880 0.884 0.831 0.483 0.490

Table 5.4.: Performance of fine-tuned parsers.

increase of 2 %, but in the case of Adam this comes with a 7 % decrease on v3.
While all of the online learning setups are able to increase the accuracy on the

new NLMaps v4 dataset, it is a challenge not to degrade the model on the original
data. It proves beneficial to include instances from the original data as well as
from memorized new instances in each update in order to make the largest gains
in accuracy on the new data while preserving old performance as well as possible.
Overall, Adadelta is the more conservative optimizer in this regard, which comes
at a significantly worse ability to adapt to the new data. In contrast, Adam adapts
better, but is very prone to overfitting on the new data when not provided with
original data. It also turns out not to have any advantage over Adadelta when the
minibatch consists only of the one new instance, which is in line with findings in
previous work. Furthermore, using a single instance in five consecutive batches
leads to overfitting even when original data is added. Most likely, this is due to
Adam’s first-order momentum which builds up over these batches.

Overall, the online learning is successful, but still not as effective as traditional
offline learning from a mix of v3 and v4, which achieves an accuracy which is
higher by 5.8 %. But note that the offline learning was run for 20 epochs while the
online learning simulations made only one pass over the training data. Compare
the number of steps in Figures 5.7 and 5.9 for this.

47



5. Experiments

88000 90000 92000 94000 96000 98000
Steps

30

35

40

45

50

55

60

N
LM

ap
sv

4
D
ev

A
cc
ur

ac
y

v4 Adadelta 1-4-5 Iter: 5
v4 Adam 1-4-5 Iter: 5
Starting Accuracy
Top Accuracy of Offline Training

Figure 5.11.: Learning curve on development set of NLMaps v4 during online sim-
ulation with five iterations per instance.

5.4. Qualitative Longitudinal Analysis
In order to analyze what was learned by adapting on v4, we conduct a longitudinal
analysis by observing the predictions of the model called “v3→ v3/v4 Adam 1-4-5
Iter: 1” in Table 5.4 made during the online learning pass before each update step.
More specifically, we track the performance on twenty tags that were randomly
sampled from all tags occurring at least twice in the v4 training set. Figure 5.12
plots the success of the predictions for each tag across the pass over v4 meaning
that the instance index on the x axis is the number of instances that have been
processed at that point. Note that the plotted tags will in general not be the only
target tags in an MRL. E.g., healthcare=optometrist usually occurs in a union
with shop=optician and sport=cricket often occurs in an intersection with ei-
ther leisure=stadium or leisure=pitch.

The results of the longitudinal analysis are mixed: There are several tags like
shop=tattoo, sport=cricket, sport=ice_skating and cuisine=mexicanwhere
the predictions feature a noticeable improvement over time, but there are also tags
like shop=butcher where there is no clear improvement. This discrepancy can
be understood by taking a closer look at the difference between queries involving

48



5. Experiments

0 500 1000 1500 2000
Instance

tourism=gallery
sport=ice_skating
sport=equestrian

sport=cricket
sport=basketball

shop=tattoo
shop=butcher

man_made=adit
leisure=dog_park

landuse=farm
healthcare=optometrist
generator:source=wind

denomination=roman_catholic
cuisine=mexican

building=*
brand:wikidata=Q177054

amenity=fire_station
amenity=courthouse
amenity=bus_station

amenity=bank

Figure 5.12.: Longitudinal analysis of predictions for twenty randomly selected
tags during the online learning simulation on v4. Green crosses mean
that the model’s prediction is completely correct, blue circles mean
that the tag in question was correctly predicted but there is some
other error with the prediction and red triangles mean that the tag
in question is not present in the prediction (implying also that the
prediction is incorrect).

tattoo and butcher. While the NL queries asking for the former all involve the to-
ken ‘tattoo’ (‘i want a tattoo …’, ‘… closest tattoo studio …’, etc.) and theMRL queries’
only target tag is shop=tattoo, the situation is more complex for butchers on both
the NL and the MRL side: As shown in Figure 5.13, the NL queries may directly ask
for butchers, but they may also ask for places to buy meat or even sausages. As a
further complication, the MRL queries when asking for butchers and meat shops
will only target the shop=butcher tag, but MRL queries when asking for places to
buy meat or sausages will additionally target the shop=supermarket tag.

In the case of amenity=fire_station, the model fails to correctly use the tag
for a fourth time after three successes and instead uses the non-existent amenity=
firestation (dropping the underscore). This is one of several cases that illustrate
the brittleness of the character-based model.

49



5. Experiments

When is the meat shop next to Residencial Ibirapuera open?
meat shops in Auxerre (canton d’Auxerre-3)
show me butchers in Marchais-Beton
where can I buy meat in Babiny I?
Are there any butcher shops in Sommerland that is accessible by wheelchair?
how many butchers in cukurambar mahallesi in Podgaje
where can I buy sausages in Vlkov u Jaroměře?
where can i buy meat in rennes

Figure 5.13.: NL queries in the v4 training set that features shop=butcher in the
corresponding MRL. Note that the blue instance with butchers in
Podgaje is obscured by overlapping in Figure 5.12.

50



6. Discussion and Future Work

We spent significant work on analyzing the original NLMaps v2 dataset and on
fixing any of its shortcomings as well as possible. The insight gained by this we
also used for generating new synthetic queries. By combining the fixed old data
with the new synthetic data into the NLMaps v3 dataset the data available for pre-
training an NLMaps model is vastly improved as shown in the experiments con-
ducted in Section 5.1. This success naturally calls for continuing this work by
generating even more diverse synthetic data, which can be done by extending the
table mapping NL terms to OSM tags or by designing new templates. New tem-
plates could incorporate verb-based questions like ‘Where can I eat chinese food?’
or take inspiration from the newly collected queries in NLMaps v4.

The annotation experiment was successful for the most part and we now have
a natural dataset on which new NLMaps models can be evaluated in a more sensi-
ble way than on the flawed and synthetic previous datasets. However, it must be
acknowledged that the MRL queries the annotators produced reintroduce some in-
consistencies in tag usage that were already observed in NLMaps v2. This is partly
due to simple user error (e.g. when an annotator does not know of or does not
think of a similar tag for the same thing, like using only shop=tailor and forget-
ting craft=tailor), but is partly also rooted in actual vagueness of the NL queries.
E.g., what should really be selected when asking for a place to buy cigarettes? Only
tobacco shops or also cigarette vending machines or even all kinds of places that
might sell cigarettes like supermarkets or kiosks?

Two different approaches for handling this tag inconsistency come to mind: In a
more “authoritarian” approach, an abstraction layer between OSM and MRL could
be introduced. This could take the form of a table mapping concepts like “tailor”
or “buy cigarettes” – which should then appear in the MRL – to a manually main-
tainedOSMmeaning like or(shop=tailor, craft=tailor) or or(shop=tobacco,
vending=cigarettes), respectively. Butmaintaining thismappingwould amount
to a lot of (semi-)manual work and it would mean losing the advantage of directly
using OSM tags, which most OSM users are somewhat familiar with.

In contrast, the second approach is guided by thr MRL queries’ denotation:

51



6. Discussion and Future Work

When several users issue queries with some minimum amount of overlap in their
result sets after interpretation, this – perhaps together with a semantic similarity
of the NL queries – can be taken as a sign that the users are actually asking for the
same thing. It is then left for a system to observe which MRL formulation is the
most popular (or – in a recall-focused approach – the most inclusive) and regard
this as the canonical MRL.

However, even the NLMaps v4raw with its inconsistencies is shown in our sim-
ulations to be very usable for improving the parser in an online learning setting.
Not surprisingly, manually removing the inconsistencies aswell as possible yielded
even better results. The Adam optimizer is shown to adapt faster to new examples
while Adadelta is better suited to preserve the performance on the pre-training
dataset. It must be noted that we did not conduct any true online learning exper-
iment where the annotators would have made their annotations with the model
changing over time. Moreover, albeit the online simulations did improve the ac-
curacy on the new data, they were outperformed signifcantly by the simple offline
batch learning.

Regardless of the learning setup, the main challenge of any NLMaps dataset
remains predicting the correct tag combination while our models make only few
errors in other parts of the MRL. Aside from collecting a lot more training data
to make the tag distribution in the training set less sparse, zero-shot learning is
a direction which could be explored. In one approach, the tag descriptions from
the OSM wiki or even the whole wiki pages could be used as a knowledge source
for learning about the meaning of tags, perhaps in a similar approach as in CLIP
(Radford et al. 2021).

Part of the reason for the fact that selecting the correct tags poses the main
challenge is that the MRL structure is actually very simple. In fact, it is too sim-
plistic for representing some queries that OSM could answer. For example, it is not
possible to ask for places whose name (or description or any other tag) includes
a certain substring nor is it possible to query places which are not tagged with a
certain tag. And also referring to one’s own geographical position isn’t possible
resulting in the situation that trivial NL queries like ‘closest bus stop near me’ have
no MRL equivalent. These issues serve as pointers on how to extend the current
MRL.

Due to its success in previous work, a character-based model was used for all
work in this thesis, which has the advantages that no NER system is necessary for
recognizing named entities and copying them to the MRL and that new tags can
easily be accommodated without the need to add them to the target vocabulary.

52



6. Discussion and Future Work

The downside of the character-based model is that it is fairly sensitive to spelling
variations on the NL side. As observed in the experiments, the spelling ‘fire sta-
tion’ was correctly mapped to amenity=fire_station, but the spelling variation
‘firestation’ led to the model hallucinating the tag amenity=firestation. A re-
lated problem is that the character-based model will probably not be able to take
advantage of semantic similarity of NL queries or even single words. The time is
ripe for a modern seq-to-seq model operating on subword units like BPE at least
on the NL side with a pointer mechanism (See et al. 2017) for copying the location
names from NL to MRL. To leverage semantic similarity between terms and even
whole NL queries, pre-trained language representations should be incorporated in
a similar way as done by Chen et al. (2020).

As of now, NLMaps is unfortunately only available in English. However, the
relative simplicity of most NL queries should make it possible to translate them
into other languages in order to create datasets for parsing NL queries in languages
other than English.

53



7. Conclusion

In this thesis, we conducted a detailed analysis of the original NLMaps v2 dataset
finding several shortcomings, many of which were introduced by a flawed ap-
proach of generating synthetic data. We fixed these shortcomings as well as pos-
sible and extended the dataset by generating a linguistically diverse dataset using
probabilistic templates. Training on the extended dataset greatly improves accu-
racy on unseen data, especially by making the resulting parser robust against new
location names.

We built a web interface for issuing NL queries, which can also be used to correct
wrong parses and which is capable of training the parser on the new feedback in
an online fashion. With the help of hired annotators, we created the first large
NLMaps dataset consisting of real user queries. This new dataset was used to
demonstrate the effectiveness of our online learning setup in various simulations,
although traditional offline learning still proved superior.

In our experiments and discussion, we gained new insight into what the main
challenges of the NLMaps task are and proposed various directions for subsequent
research.

54



A. Acknowledgements

I want to thank my supervisor Prof. Dr. Stefan Riezler for always being ready to
discuss the state of my work, for providing me with helpful guidance about which
approaches to pursue and for his help in finding relevant related work. Addi-
tionally, I want to thank him for making the annotation experiment possible by
financially enabling it with funds from the Google-supported project “Learning to
Negotiate Answers in Multi-Pass Semantic Parsing”.

Furthermore, I also want to thank Raphael Schumann and especially Michael
Staniek for valuable comments on the ongoing research in numerous discussion
sessions. Michael also made his parsing model available to me, which was used
as one of the foundations of this thesis. An even more integral foundation is of
course Carolin Lawrence’s pioneering work on NLMaps, without which this thesis
would not exist today.

Finally, I would like to acknowledge the great work of the motivated annota-
tors from all over the world who participated in my annotation project, including
the OSM mappers Benjámin Zachár, Mateusz Konieczny, Rabin Ojha. Especially
Mateusz and another very experienced mapper (here unnamed) were a great help
in debugging issues with the web interface, in discussing finer points of OSM tag-
ging questions and by providing valuable hints for how to improve NLMaps in the
future.

55



B. Annotation Guidelines

B.1. Requirements
The annotation website1 is meant to be used with a recent version of a modern
Browser. That means Firefox, Safari, Chrome or any other Chromium derivates
(such as recentMS Edge). It is not optimized for mobile use, so please use a desktop
computer.

B.2. Principles
In essence, we need a dataset that fulfills three criteria:

1. The natural language (NL) queries should be linguistically diverse, i.e. a mix
of short search-engine-style queries and full questions like you would ask
another person.

2. The queries should cover a large part of the commonly used OpenStreetmap
(OSM) tags that are relevant for our system.

3. The queries should cover the most useful OSM tags in particular depth. E.g.,
asking for restaurants and shops is arguably one of the most useful areas.

B.3. Linguistic Diversity
When entering queries, please diversify your language use. Valid variations of the
same question include:

• ‘closest swimming pool near Eiffel Tower in Paris’

• ‘In Paris, give me the swimming pool that is closest to the Eiffel Tower!’

• ‘Closest place where I can take a swim near Eiffel Tower in Paris’

1https://nlmaps.gorgor.de/

56

https://nlmaps.gorgor.de/


B. Annotation Guidelines

However, keep it natural and don’t make your queries artificially complex. If a
particular query style comes more natural to you, it’s alright to use it more often.
Just make sure that not all of you queries look alike.

Similarly, avoid using the same place namemore than a couple of times. Also use
place names in other languages than German and English, e.g. ‘České Budějovice’
or ‘València’.

It’s very important that you don’t only base your wording on the name of the
OSM tags. E.g., for highway=speed_camera you can ask for a ‘speed camera’, but
you can also ask for a ‘speed trap’ or a ‘radar trap’.

B.4. Tag Diversity and Depth
Take a ‘quick’ look at the most important OSM features2 to get a feel for what
things you can ask for in OSM. You can use this as an inspiration if you run out of
ideas about what to ask. Choose tags that you find relevant.

Beware of the building=* tag! It is used to tag what the building was built
as, not to tag its current use. E.g., a place tagged building=church may not be a
church anymore; churches are tagged with the tags amenity=place_of_worship
+ religion=christian. If in doubt, don’t use the building=* tag, at all.

In general, enter more than one query for a chosen tag or tag combination,
especially if the system fails answering the query correctly.

B.4.1. Most Relevant Keys

Please enter at least the given amount of queries for each of the following. The
linked wiki pages give you a feel for what the most common tags in each category
are.

• shop=*: 30.

• leisure=*: 20.

• sport=*: 20.

• craft=*: 20.

• man_made=*: 10.

• amenity=cafe: 10.

2https://wiki.openstreetmap.org/wiki/Map_features

57

https://wiki.openstreetmap.org/wiki/Map_features


B. Annotation Guidelines

• amenity=restaurant: 10.

• amenity=fast_food: 10.

• cuisine=*: 20.

• diet:*=*: 20.

• wheelchair=yes: 20. Just sprinkle phrases like ‘wheelchair-accessible [place]’
or ‘[places] that are wheelchair-accessible’ into your queries now and then.

Some tags can and should be combined. E.g., use shop=massage,wheelchair=yes
for wheelchair-accessible massage shops or club=sport,sport=tennis for tennis
clubs. But use only sport=tennis if you’re just asking for places to play tennis
at.

Especially the cuisine=* and diet:*=* tags can be combined productively.
Some examples:

• cuisine=japanese: Places serving japanese food

• cuisine=japanese,amenity=fast_food: Fast food restaurants serving
japanese food

• or(diet:vegan=yes,diet:vegan=only),amenity=cafe: Vegan cafes

• or(diet:gluten_free=yes,diet:gluten_free=only),

cuisine=burger,amenity=restaurant: Restaurants serving
gluten-free burgers

B.5. Miscellaneous
• Sometimes deciding between QType findkey('name') and latlong is not
obvious. By convention:

– ‘Which/What restaurants/museums/etc. …’: findkey('name')

– ‘Name restaurants/museums/etc. …’: findkey('name')

– ‘What are restaurants/museums/etc. … called?’: findkey('name')

– ‘Give/Tell (me) the names of restaurants/museums/etc. …’:
findkey('name')

– ‘Show/Give/Tell (me) restaurants/museums/etc. …’: latlong

– ‘Where are restaurants/museums/etc. …’: latlong

58



B. Annotation Guidelines

– ‘Location/Coordinates of restaurants/museums/etc. …’: latlong

• Don’t repeat the same query with only a different location. Adjust the word-
ing, as well.

• Some queries will not return results even if they are correct (e.g. rare tags
like gluten-free etc.). Please base your judgement primarily on the mrl, not
on the answer or map.

• Avoid querying too much data (‘trees in Berlin’) or too large areas (‘restau-
rants in Bangladesh’) to put less stress on servers and your browser.

• ‘Show all restaurants in X that are wheelchair-accessible!’: Target tags include
wheelchair=yes, QType is ‘latlong‘

• ‘Is X accessible by wheelchair?’: Use QType findkey('wheelchair'), no
wheelchair=* target tag

• Questions looking for the closest thing to some other thing should always
have a maxdist of DIST_INTOWN. In theory, this doesn’t make sense. It’s just
a limitation of the current system.

• Use the appropriate maxdist value according to the table in chapter 4 of the
tutorial3. E.g., when using the word “near” in your query, use DIST_INTOWN.

B.6. Counting Annotations
A natural language query and the corresponding mrl are considered one complete
annotation. If you don’t know what the correct mrl looks like, you can choose
“Wrong, but I cannot help” and it will be considered an incomplete annotation.
This is still valuable; four incomplete annotations will count as one complete an-
notation.

3https://nlmaps.gorgor.de/tutorial?chapter=4

59

https://nlmaps.gorgor.de/tutorial?chapter=4


Bibliography

Andreas, Jacob, Andreas Vlachos, and Stephen Clark (2013). “Semantic Parsing as
Machine Translation”. In: Proceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics. ACL (Sofia, Bulgaria).

Arun, Abhishek and Philipp Koehn (2007). Online Learning Methods For Discrimi-
native Training of Phrase Based Statistical Machine Translation.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: Proceedings of the
3rd International Conference on Learning Representations. ICLR (San Diego, CA,
USA).

Barrachina, Sergio, Oliver Bender, Francisco Casacuberta, Jorge Civera, Elsa Cubel,
Shahram Khadivi, Antonio Lagarda, Hermann Ney, Jesús Tomás, Enrique Vi-
dal, and Juan-Miguel Vilar (2009). “Statistical Approaches to Computer-Assisted
Translation”. In: Computational Linguistics 35.1, pp. 3–28.

Budhathoki, Nama R. (2010). “Participants’ motivations to contribute geographic
information in an online community”. Dissertation. University of Illinois at Urbana-
Champaign.

Casacuberta, Francisco, Jorge Civera, Elsa Cubel, Antonio L. Lagarda, Guy La-
palme, Elliott Macklovitch, and Enrique Vidal (2009). “Human interaction for
high qualitymachine translation”. In:Communications of the ACM 52.10, pp. 135–
138.

Chen, Xilun, Asish Ghoshal, Yashar Mehdad, Luke Zettlemoyer, and Sonal Gupta
(2020). “Low-ResourceDomainAdaptation for Compositional Task-Oriented Se-
mantic Parsing”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing. EMNLP (Online), pp. 5090–5100.

Cho, Kyunghyun, Bart vanMerrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio (2014). “Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical Machine Translation”.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing. EMNLP (Doha, Qatar), pp. 1724–1734.

60



Bibliography

Das, Maitraye, Brent Hecht, and Darren Gergle (2019). “The Gendered Geography
of Contributions to OpenStreetMap: Complexities in Self-Focus Bias”. In: Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
CHI (Glasgow, United Kingdom), pp. 1–14.

Devlin, Jacob,Ming-Wei Chang, Kenton Lee, andKristina Toutanova (2019). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”.
In: Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies (Minneapo-
lis, MN, USA), pp. 4171–4186.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT
Press. url:https://www.deeplearningbook.org/ (visited on 04/19/2021).

Green, Bert F., Alice K.Wolf, Carol Chomsky, and Kenneth Laughery (1961). “Base-
ball: An automatic question answerer”. In: Proceedings of the Western Computing
Conference. Vol. 19, pp. 219–224.

Gwerder, Simon (2014). Tag-Suchmaschine und Thesaurus für OpenStreetMap. Stu-
dent Research Project. HSR University for Applied Sciences Rapperswil. url:
https://eprints.ost.ch/id/eprint/409/ (visited on 04/16/2021).

Haas, Carolin and Stefan Riezler (2016a). “A Corpus and Semantic Parser for Mul-
tilingual Natural Language Querying of OpenStreetMap”. In: Proceedings of the
2016 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. NAACL (San Diego, CA, USA),
pp. 740–750.

Hemphill, Charles T., John J. Godfrey, and George R. Doddington (1990). “The ATIS
Spoken Language Systems Pilot Corpus”. In: Speech and Natural Language: Pro-
ceedings of a Workshop Held at Hidden Valley. HLT (Hidden Valley, PA, USA).

Hochreiter, Sepp and Jürgen Schmidhuber (1993). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780.

Hwang, Wonseok, Jinyeong Yim, Seunghyun Park, and Minjoon Seo (2019). “A
Comprehensive Exploration on WikiSQL with Table-Aware Word Contextual-
ization”. In: Workshop: Knowledge Representation and Reasoning Meets Machine
Learning. NeurIPS (Vancouver, Canada).

Jurafsky, Dan and James H. Martin (2021). “Speech and Language Processing”.
Draft of the 3rd edition. url:https://web.stanford.edu/~jurafsky/
slp3/ (visited on 04/30/2021).

Karimova, Sariya, Patrick Simianer, and Stefan Riezler (2018). “A User-Study on
Online Adaptation of Neural Machine Translation to Human Post-Edits”. In:Ma-
chine Translation 32, pp. 309–324.

61

https://www.deeplearningbook.org/
https://eprints.ost.ch/id/eprint/409/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/


Bibliography

Kennardi, Alvin, Gabriela Ferraro, and QingWang (2019). “Domain Adaptation for
Low-Resource Neural Semantic Parsing”. In: Proceedings of the The 17th Annual
Workshop of the Australasian Language Technology Association. ALTA (Sydney,
Australia), pp. 87–93.

Kreutzer, Julia, Jasmijn Bastings, and Stefan Riezler (2019). “Joey NMT: AMinimal-
ist NMT Toolkit for Novices”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing: System Demonstrations. EMNLP-IJCNLP
(Hong Kong, China), pp. 109–114.

Kreutzer, Julia, Nathaniel Berger, and Stefan Riezler (2020). “Correct Me If You
Can: Learning from Error Corrections and Markings”. In: Proceedings of the 22nd
Annual Conference of the European Association for Machine Translation. EAMT
(Lisboa, Portugal), pp. 135–144.

Kreutzer, Julia, Stefan Riezler, and Carolin Lawrence (2020). “Learning from Hu-
man Feedback: Challenges for Real-World Reinforcement Learning in NLP”. In:
Workshop: The Challenges of Real World Reinforcement Learning. NeurIPS (On-
line).

Kreutzer, Julia, Artem Sokolov, and Stefan Riezler (2017). “Bandit Structured Pre-
diction for Neural Sequence-to-Sequence Learning”. In: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics. ACL (Vancou-
ver, Canada), pp. 1503–1513.

Lam, Tsz Kin, Julia Kreutzer, and Stefan Riezler (2018). “A Reinforcement Learning
Approach to Interactive-Predictive Neural Machine Translation”. In: Proceedings
of the 21st Annual Conference of the EuropeanAssociation forMachine Translation.
EAMT (Alacant, Spain), pp. 169–178.

Lawrence, Carolin and Stefan Riezler (2016). “NLmaps: A Natural Language Inter-
face to Query OpenStreetMap”. In: Proceedings of the 26th International Confer-
ence on Computational Linguistics. COLING (Osaka, Japan), pp. 6–10.

Lawrence, Carolin and Stefan Riezler (2018). “Improving a Neural Semantic Parser
by Counterfactual Learning from Human Bandit Feedback”. In: Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics. ACL
(Melbourne, Australia), pp. 1820–1830.

Lawrence, Carolin, Artem Sokolov, and Stefan Riezler (2017). “Counterfactual Learn-
ing from Bandit Feedback under Deterministic Logging: A Case Study in Sta-
tistical Machine Translation”. In: Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing. EMNLP (Copenhagen, Denmark),
pp. 2566–2576.

62



Bibliography

Lechner, Marco (2011). “Nutzungspotentiale crowdsource-erhobener Geodaten auf
verschiedenen Skalen”. Dissertation. University of Freiburg.

Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer (2020). “BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension”. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (Online), pp. 7871–7880.

Liang, Percy, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar (2006). “An
End-to-End Discriminative Approach to Machine Translation”. In: Proceedings
of the 21st International Conference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguistics. ACL/COLING (Sydney,
Australia), pp. 761–768.

Lin, Xi Victoria, Richard Socher, and Caiming Xiong (2020). “Bridging Textual
and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing”. In: arXiv:
2012.12627 [cs.CL].

Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim
Harley, Timothy P. Lillicrap, David Silver, andKorayKavukcuoglu (2016). “Asyn-
chronousMethods for Deep Reinforcement Learning”. In: Proceedings of the 33rd
International Conference on International Conference on Machine Learning. ICML
(New York, NY, USA), pp. 1928–1937.

Mollá, Diego and José Luis Vicedo (2007). “Question Answering in Restricted Do-
mains: An Overview”. In: Computational Linguistics 33.1, pp. 41–61.

Murphy, Kevin Patrick (2021). Probabilistic Machine Learning: An Introduction. MIT
Press. url: http://probml.ai/ (visited on 04/19/2021).

Nguyen, Khanh, Hal Daumé III, and Jordan Boyd-Graber (2017). “Reinforcement
Learning for Bandit Neural Machine Translation with Simulated Human Feed-
back”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. EMNLP (Copenhagen, Denmark), pp. 1464–1474.

Ortiz-Martínez, Daniel (2016). “Online Learning for Statistical Machine Transla-
tion”. In: Computational Linguistics 42.1, pp. 121–161.

Ortiz-Martínez, Daniel, Ismael García-Varea, and Francisco Casacuberta (2010).
“Online Learning for Interactive Statistical Machine Translation”. In: Human
Language Technologies: The 2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics. NAACL (Los Angeles, CA,
USA), pp. 546–554.

63

https://arxiv.org/abs/2012.12627
http://probml.ai/


Bibliography

Peris, Álvaro and Francisco Casacuberta (2019). “Online learning for effort reduc-
tion in interactive neural machine translation”. In: Computer Speech & Language
58, pp. 98–126.

Peris, Álvaro, Luis Cebrián, and Francisco Casacuberta (2017). “Online Learning for
Neural Machine Translation Post-editing”. In: arXiv: 1706.03196 [cs.LG].

Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, AmandaAskell, PamelaMishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever (2021). “Learning Transferable Visual Models From
Natural Language Supervision”. In: arXiv: 2103.00020 [cs.CV].

Schmidt, Manuela and Silvia Klettner (2013). “Gender and Experience-Related Mo-
tivators for Contributing to OpenStreetMap”. In: International Workshop on Ac-
tion and Interaction in Volunteered Geographic Information (Leuven, Belgium),
pp. 13–18.

See, Abigail, Peter J. Liu, and Christopher D. Manning (2017). “Get To The Point:
Summarization with Pointer-Generator Networks”. In: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics. ACL (Vancou-
ver, Canada), pp. 1073–1083.

Shannon, Claude Elwood (1948). “A Mathematical Theory of Communication”. In:
The Bell System Technical Journal 27.3, pp. 379–423.

Shaw, Peter, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova (2020).
“Compositional Generalization andNatural Language Variation: Can a Semantic
Parsing Approach Handle Both?” In: arXiv: 2010.12725 [cs.CL].

Stahlberg, Felix (2020). “Neural Machine Translation: A Review and Survey”. In:
Journal of Artificial Intelligence Research 69, pp. 343–418.

Staniek,Michael (2020). “Towards Error-Aware Interactive Semantic Parsing”.M.A.
Thesis. Heidelberg University.

Stark, Hans-Jörg (2010). Empirische Untersuchung derMotivation von Teilnehmenden
bei der freiwilligen Erfassung von Geodaten. Presentation.

Turchi, Marco, Matteo Negri, M. Amin Farajian, and Marcello Federico (2017).
“Continuous Learning fromHuman Post-Edits for Neural Machine Translation”.
In: The Prague Bulletin of Mathematical Linguistics 108, pp. 233–244.

Wang, Bailin, Richard Shin, Xiaodong Liu, Oleksandr Polozov, andMatthewRichard-
son (2020). “RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-
to-SQL Parsers”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. ACL (Online), pp. 7567–7578.

Watanabe, Taro, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki (2007). “Online
Large-Margin Training for Statistical Machine Translation”. In: Proceedings of

64

https://arxiv.org/abs/1706.03196
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2010.12725


Bibliography

the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning. EMNLP/CoNLL (Prague, Czech
Republic), pp. 764–773.

Williams, Ronald J. (1992). “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning”. In: Machine Learning 8 (3–4), pp. 229–
256.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, YoshikiyoKato, TakuKudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, GregCorrado,MacduffHughes, and JeffreyDean (2016). “Google’s
Neural Machine Translation System: Bridging the Gap between Human andMa-
chine Translation”. In: arXiv: 1609.08144 [cs.CL].

Xu, Xiaojun, Chang Liu, and Dawn Song (2017). “SQLNet: Generating Structured
Queries From Natural Language Without Reinforcement Learning”. In: arXiv:
1711.04436 [cs.CL].

Yu, Tao, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev
(2018). “Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-
Domain Semantic Parsing and Text-to-SQL Task”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. EMNLP (Brus-
sels, Belgium), pp. 3911–3921.

Zelle, JohnM. and Raymond J.Mooney (1996). “Learning to Parse DatabaseQueries
Using Inductive Logic Programming”. In: Proceedings of the Thirteenth National
Conference on Artificial Intelligence. AAAI (Portland, OR, USA), pp. 1050–1055.

Zhong, Victor, Caiming Xiong, and Richard Socher (2017). “Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning”. In:
arXiv: 1709.00103 [cs.CL].

65

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1709.00103


Online Resources

Astrakhan, Yuri. Sophox. url: https : / / wiki . openstreetmap . org /
wiki/Sophox (visited on 04/08/2021).

Facebook Inc. PyTorch. url: https://pytorch.org (visited on 04/16/2021).
GeoChicas. url:https://wiki.openstreetmap.org/wiki/GeoChicas

(visited on 04/30/2021).
Gwerder, Simon. OSM TagFinder. url: https://tagfinder.herokuapp.
com/ (visited on 04/16/2021).

Haas, Carolin and Stefan Riezler (2016b). NLmaps. url: https://www.cl.
uni-heidelberg.de/statnlpgroup/nlmaps/ (visited on 04/08/2021).

Hipp, D. Richard, Dan Kennedy, and Joe Mistachkin. SQLite. url: https://
sqlite.org/ (visited on 04/16/2021).

Hoffmann, Sarah,Marc TobiasMetten, and BrianQuinion.Nominatim. url:https:
//nominatim.org/ (visited on 04/08/2021).

Kreutzer, Julia, Jasmijn Bastings, and Stefan Riezler. Joey NMT. url: https://
github.com/joeynmt/joeynmt (visited on 04/16/2021).

Lawrence, Carolin.Overpass NLmaps. url:https://github.com/carhaas/
overpass-nlmaps (visited on 04/08/2021).

Mocnik, Franz-Benjamin (2017). OSMPythonTools. url: https : / / github .
com/mocnik-science/osm-python-tools (visited on 04/02/2021).

Nominatim Special Phrases. url: https://wiki.openstreetmap.org/
wiki/Nominatim/Special_Phrases/EN (visited on 04/08/2021).

Olbricht, Roland. Overpass API. url: https://overpass-api.de/ (visited
on 04/08/2021).

Open Data Commons. Open Data Commons Open Database License (ODbL). url:
https://opendatacommons.org/licenses/odbl/ (visited on 04/08/2021).

OpenStreetmap Foundation.OpenStreetMap. url:https://www.openstreetmap.
org/about (visited on 04/08/2021).

OSM Mailing List talk. url: https : / / lists . openstreetmap . org /
listinfo/talk (visited on 04/30/2021).

66

https://wiki.openstreetmap.org/wiki/Sophox
https://wiki.openstreetmap.org/wiki/Sophox
https://pytorch.org
https://wiki.openstreetmap.org/wiki/GeoChicas
https://tagfinder.herokuapp.com/
https://tagfinder.herokuapp.com/
https://www.cl.uni-heidelberg.de/statnlpgroup/nlmaps/
https://www.cl.uni-heidelberg.de/statnlpgroup/nlmaps/
https://sqlite.org/
https://sqlite.org/
https://nominatim.org/
https://nominatim.org/
https://github.com/joeynmt/joeynmt
https://github.com/joeynmt/joeynmt
https://github.com/carhaas/overpass-nlmaps
https://github.com/carhaas/overpass-nlmaps
https://github.com/mocnik-science/osm-python-tools
https://github.com/mocnik-science/osm-python-tools
https://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN
https://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN
https://overpass-api.de/
https://opendatacommons.org/licenses/odbl/
https://www.openstreetmap.org/about
https://www.openstreetmap.org/about
https://lists.openstreetmap.org/listinfo/talk
https://lists.openstreetmap.org/listinfo/talk


Online Resources

Pallets Projects. Flask. url: https://palletsprojects.com/p/flask/
(visited on 04/16/2021).

Raifer, Martin.Overpass Turbo. url: https://overpass-turbo.eu/ (visited
on 04/08/2021).

Schaub, Tim, Andreas Hocevar, Tom Payne, Frédéric Junod, Eric Lemoine, and
Christopher Schmidt. OpenLayers. url: https://openlayers.org/ (vis-
ited on 04/16/2021).

Subreddit r/openstreetmap. url:https://www.reddit.com/r/openstreetmap
(visited on 04/30/2021).

67

https://palletsprojects.com/p/flask/
https://overpass-turbo.eu/
https://openlayers.org/
https://www.reddit.com/r/openstreetmap

	Abstract
	Abriss (German Abstract)
	Introduction
	Related Work
	Question Answering by Semantic Parsing
	Online Learning and Domain Adaptation
	Online Learning
	Learning from Weak User Feedback
	Domain Adaptation in Semantic Parsing

	OpenStreetMap Query Systems
	OpenStreetMap and its Ecosystem
	NLMaps


	NLMaps Data Improvement
	Analysis of NLMapsv2
	Train/Test Resemblance
	Inconsistencies in NL Term to Tag Mapping
	Inconsistencies in MRL Syntax
	Little Linguistic Diversity
	Little variety in location names
	Unnatural Wording of Queries
	Improper Usage of OSM Tags

	Improving on NLMapsv2
	Fixing NLMapsv2 Shortcomings
	Extension of NLMapsv2


	Web Interface
	Architecture
	MRL Interpretation
	NL Query Keyword Extraction
	Online Learning

	Experiments
	Training on NLMapsv2 and NLMapsv3
	Annotation for New Dataset
	Online Learning Simulation
	Qualitative Longitudinal Analysis

	Discussion and Future Work
	Conclusion
	Acknowledgements
	Annotation Guidelines
	Requirements
	Principles
	Linguistic Diversity
	Tag Diversity and Depth
	Most Relevant Keys

	Miscellaneous
	Counting Annotations


