Evolving Human Language: Cognition Plus Communication

Tecumseh Fitch - University of Vienna

Traditional Opposition: Linguistics vs Evolution

Today: Bridges between Disciplines

Marc Hauser, Noam Chomsky, Tecumseh Fitch : The Language Faculty: What is it, who has it, and how did it evolve? *Science* 2002, 298:1569-1579.

Fitch, Hauser, Chomsky : The Evolution of the Language Faculty. Cognition 2005, 97:179-210.

Fitch : *The Evolution of Language*. Cambridge: Cambridge University Press; 2010.

Rumi's Parable of the Elephant

The Key to Language is...

Tomasello

Lieberman

Chomsky

Shared Intentionality Speech

Merge

Modern Multi-Component View

Broadly Shared Biological Foundations

The Comparative Method: Homology and Analogy

Faculty of Language - Derived components (relative to chimpanzees) – not necessarily "unique"

Processing)

Pragmatics)

Outline of Today's Talk

- Part 1: Speech Neural connectivity, not vocal anatomy.
- Part 2: What's special about Syntax? The Dendrophilia Hypothesis.
- Part 3: Derived from *what*? Cognition *versus* Communication as sources of precursors

Core Fact: Apes cannot imitate speech

Furness, 1916 Yerkes, 1929 Hayes, 1951 Kellog, 1968 Gardner, 1969

Why Can Humans, but not Apes, Speak? Two Traditional Hypotheses

Philip Lieberman et al. 1969; 1972

Fig. 2. Vowel "space" of simulated monkey vocal tract relative to human vowel space and natural ape and monkey cries

'The acoustic "vowel space" of a rhesus monkey is quite restricted... these animals thus lack the output mechanism necessary for production of human speech'

Hyoid & Tongue Root

Larynx Lowers Dynamically in *All* Mammals studied. Dog

9

Velum

Epiglottis Larvnx <

New Macaque Data: Vocal Tract Flexibility

Fitch, Mathur, de Boer, Ghazanfar 2016 Science Advances

3 Male *Macaca fasicularis*: a variety of behaviors including feeding, lip smacks and vocs

Fitch, Mathur, de Boer, Ghazanfar 2016 *Science Advances*

Key Differential Components of Spoken Language are **Neural** Mechanisms. But What?

The Direct Connections Hypothesis

Kuypers 1958; Jürgens 1990;1995; Fitch 2010

Based on humans only... how to test this hypothesis?

Many Non-primate Animals *Can* Learn to Reproduce Speech:

Italian-Speaking Mynah Bird

Hoover, a talking seal

Testing DC Hypothesis: Vocal Learning has <u>Convergently Evolved Multiple Times</u>

Humans, Songbirds, Parrots, Hummingbirds,

Cetaceans, some seals and bats, elephants...

Direct connections exist in all three different avian vocal learning clades: Prediction Upheld!

Speech: Summary and Conclusions:

- Comparative biological approach with living animals provides a powerful tool for generating and testing hypotheses
- 2. **Direct Connections** between cortex and motor neurons are needed for speech: a key derived component of spoken language

Part 2: Syntax

Sign Language Trained Apes: Better! But Learn Only Simple Syntax

Savage-Rumbaugh et al (1993) Kanzi

The Formal Language Hierarchy ("Chomsky Hierarchy") We Are Here! 0:TG 1: CSG Turing 2: CFG 3: FSG

Chomsky

Nested Sets of Increasingly Powerful Rule Systems or "Grammars" (Chomsky 1957)

Two grammars – Simple pattern generating algorithms

Finite State Grammar: (ab)ⁿ $a_1b_1 a_2b_2 a_3b_3$ Context Free Grammar: aⁿ bⁿ $a_1 a_2 a_3 b_1 b_2 b_3$

Sequential Rule

(Finite State Grammar)

Hierarchical Rule (Context Free Grammar)

Humans

100

80

60

40

20

0

% "Different"

Monkeys

Violation Consistent

Violation Consistent

Cotton-top Tamarin Results

Sequential Rule (Finite State Grammar)

Hierarchical Rule

(Context Free Grammar)

Fitch & Hauser (2004) Science

Another Regular Grammar of Interest:

Andrea Ravignani et al 2013: Biology Letters 9(6) – Squirrel monkeys (tones) Ruth Sonnweber et al 2015: Animal Cognition 18(3) – Chimpanzees (visual) Stephan Reber et al (in review: Evo Hum Behav) – Marmosets (tones)

Artificial Grammar Learning: Birds

(AB)ⁿ

Nine Stobbe, Ulrike Aust, Gesche Westphal-Fitch

Keas Successfully make many generalizations... But fail to acquire hierarchical grammar

Artificial Grammar Learning in Animals: State of the Art 2017

Neurosci 33:18825; Sonnweber et al 2015 Animal Cognition 18: 733

New Macaque Data – Wang Lab Paris

Jiang et al 2018: Current Biology: "Production of supra-regular sequences by macaque monkeys:

Comparing Macaques to Pre-Schoolers

Monkeys: 1 Block is 800 trials, so 80K-160K trials to criterion.

Preschoolers: success after 5 demonstrations: fast and easy!

The Dendrophilia Hypothesis

<u>Cognitive Hypothesis</u>:

Humans have a species-typical, **multidomain**, ability and propensity to infer treeformed, hierarchical structures from data;

Requires supra-regularity.

Computation of Hierarchy: Requires Auxiliary "Working" Memory

Push-Down Automaton: A finite-state machine with an additional memory system, termed a "**stack**"

Neuro-Computational Hypothesis: Broca's Area supports Supra-Regularity

Broca's area provides a domain-general auxiliary memory (roughly equivalent to a "stack") for other brain regions

Natalie Schenker: Broca's Area (BA44/45) is the most expanded human cortical region known, relative to chimpanzees

Rank ordered fold difference between brain structure volumes in humans and chimpanzees

Structure	Human versus chimpanzee fold difference	Data source
Brain	3.6	Chimpanzee ($n = 12$)—the present study; human ($n = 10$)—Uylings et al. (2006)
Neocortical gray	4.0	Chimpanzee ($n = 6$) and human ($n = 6$)—Rilling and Insel (1999)
Frontal cortex	4.6	Chimpanzee $(n = 6)$ and human $(n = 10)$ —Semendeferi
Area 44 left	6.6	et al. (2002) Chimpanzee ($n = 12$)—the present study; human ($n = 10$)—Uylings et al. (2006)
Area 10 right	6.3	Chimpanzee $(n = 1)$ and human $(n = 1)$ —Semendeferiet al. (2001)
Area 45 left	6.0	Chimpanzee ($n = 12$)—the present study; human ($n = 10$)—Uylings et al. (2006)
Area 45 right	5.0	Chimpanzee $(n = 12)$ —the present study; human (n = 10)—Uylings et al. (2006)
Area 44 right	4.1	Chimpanzee $(n = 12)$ —the present study; human
Area V1 left	1.8	Chimpanzee $(n = 7)$ and human $(n = 10)$ —de Sousa (2008)
Area 13 right	1.4	Chimpanzee ($n = 1$) and human ($n = 1$)—Semendeferi et al. (1998)

Schenker et al (2010) Cerebral Cortex 20:730

Jim Rilling: Broca's underwent a significant increase in connectivity: Arcuate fasiculus

Chimpanzee

Macaque

James Rilling et al 2008 Nature Neuroscience 11(4): 426-428

Hypothesis: Broca's & Supra-Regularity

Broca's provides a domain-general auxiliary working memory (roughly, a "stack") for other brain regions: **Greatly expanded in size and connectivity** in humans. Supports language (and other dendrophilic cognition)

Syntax: Summary and Conclusions:
1. Comparative biology suggests that human syntax is quite unusual
2. Humans have "dendrophilia": a propensity to interpret data in tree form

2. **Broca's area** expansion provides the neural basis for this: a key derived component of the FLD

Part 3: Semantics

Different Models of Reference

Words Refer to Thoughts, not Things!

Examples: Vervet Alarm Calls

Honeybee Dance Communication

Semantics: Conclusions:

 Animals communication systems are quite limited relative to their known cognitive abilities;

2. The appropriate precursors for many linguistic phenomena are likely found in animal **cognition** rather than animal communication.

3. Semantics: Cognitive Precursors

- Animals know (cognition) much more than they can say (communication)
- Therefore, the absence of, say, a vocalization "for" color does *not* imply that the species has no concept of color!
- Animal cognition research demonstrates a rich conceptual world in many species, suggesting that our semantic world builds upon a deep foundation

General Conclusions

- Study a wide variety of vertebrates
- Determinants of speech are neural, not vocal anatomy
- We are getting a clearer picture of what makes human **syntax** different from that available to animals.
- Humans appear to be unusually interested in, and gifted at processing, tree-like structure: we have dendrophilia. Broca's area is the computational core
- Much of our semantic apparatus preceded language and may be derived from conceptual tools already present in our nonhuman ancestors.

Thank You!

Research Supported by ERC Advanced Grant SOMACCA, FWF Grant 'Cognition & Communication', etc.