Phonology Goes Syntax

Markus A. Pöchtrager
markus.poechtrager@univie.ac.at
University of Vienna

StuTS70
Vienna, November 2021

(1) Setting the stage

(2) Binding in phonology

(3) Conclusion

How different/similar are phonology/syntax?

(11) Manipulate different objects (e.g. φ-features vs. phonological features), but are there similarities in their general architecture?

How different/similar are phonology/syntax?

(11) Manipulate different objects (e.g. φ-features vs. phonological features), but are there similarities in their general architecture?
(2) No/little: Bromberger \& Halle (1989), Neeleman \& van de Koot (2006).

How different/similar are phonology/syntax?

(1) Manipulate different objects (e.g. φ-features vs. phonological features), but are there similarities in their general architecture?
(2) No/little: Bromberger \& Halle (1989), Neeleman \& van de Koot (2006).
(3) Fundamentally the same: Dependency Phonology (Kaye, Lowenstamm \& Vergnaud 1990; Anderson 1992, 2003) \& Government Phonology (GP) (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Kaye 1990; Harris 1994), the latter having borrowed numerous types of formalism from (GB) syntax (government, ECP, projection principle, minimality principle etc.).

Vowel harmony \sim sequence of tenses? (Anderson 2003)

(1) [John said [Mary liked Jim]]. Embedded verb liked receives past from matrix verb.

Vowel harmony \sim sequence of tenses? (Anderson 2003)

(1) [John said [Mary liked Jim]]. Embedded verb liked receives past from matrix verb.
(2) Finnish partitives: talo-a 'of a house' \neq äly-ä 'of intellect'. Partitive suffix -ä receives frontness from stem vowel(s).

Vowel harmony \sim sequence of tenses? (Anderson 2003)

(1) [John said [Mary liked Jim]]. Embedded verb liked receives past from matrix verb.
(2) Finnish partitives: talo-a 'of a house' \neq äly-ä 'of intellect'. Partitive suffix -ä receives frontness from stem vowel(s).
(3) [Mary liked [to think [Jim admired her]]].

Verbal form think transparent to spreading of past.

Vowel harmony \sim sequence of tenses? (Anderson 2003)

(1) [John said [Mary liked Jim]]. Embedded verb liked receives past from matrix verb.
(2) Finnish partitives: talo-a 'of a house' \neq äly-ä 'of intellect'.

Partitive suffix -ä receives frontness from stem vowel(s).
(3) [Mary liked [to think [Jim admired her]]].

Verbal form think transparent to spreading of past.
(4) laki-a 'of a law' \neq täti-ä 'of an aunt'

Vowel i transparent to spreading of frontness.

The big prize: Hierarchy

(1) Syntax clearly hierarchical; but phonology?

The big prize: Hierarchy

(1) Syntax clearly hierarchical; but phonology?
(2) Phonology often assumed to be (completely) flat (Neeleman \& van de Koot 2006; Scheer 2004, 2012) or at best moderately hierarchical (Nespor \& Vogel 1986), but certainly not recursive, i.e. hierarchical and allowing self-embedding (Jackendoff 2007).

The big prize: Hierarchy

(1) Syntax clearly hierarchical; but phonology?
(2) Phonology often assumed to be (completely) flat (Neeleman \& van de Koot 2006; Scheer 2004, 2012) or at best moderately hierarchical (Nespor \& Vogel 1986), but certainly not recursive, i.e. hierarchical and allowing self-embedding (Jackendoff 2007).
(3) Argument for recursion in phonology is complex (Pöchtrager 2020).

The big prize: Hierarchy

(1) Syntax clearly hierarchical; but phonology?
(2) Phonology often assumed to be (completely) flat (Neeleman \& van de Koot 2006; Scheer 2004, 2012) or at best moderately hierarchical (Nespor \& Vogel 1986), but certainly not recursive, i.e. hierarchical and allowing self-embedding (Jackendoff 2007).
(3) Argument for recursion in phonology is complex (Pöchtrager 2020).
(4) Here we will focus on whether we need hierarchy similar to that in syntax.

Trees in phonology not new

(1) García-Bellido (2005) "the simplest possible hypothesis to approach variation [is that] an organism might use the same operative mechanisms, at different levels of organization [...], unless it is proved that it does not."

Trees in phonology not new

(1) García-Bellido (2005) "the simplest possible hypothesis to approach variation [is that] an organism might use the same operative mechanisms, at different levels of organization [...], unless it is proved that it does not."
(2) Hierarchy everywhere in grammar; null-hypothesis: also in phonology (van der Hulst 2006, 2010b,a).

Trees too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.

Trees too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.
(2) Can be used \nrightarrow must be used.

Trees too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.
(2) Can be used \nrightarrow must be used.

3 What can only be explained by trees, instead of just also be explained?

Trees too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.
(2) Can be used \nrightarrow must be used.
(3) What can only be explained by trees, instead of just also be explained?
(4) Syntax: trees for the expression of asymmetries, which could not be handled by flat structures (pace Barker 2012)

Trees too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.
(2) Can be used \nrightarrow must be used.
(3) What can only be explained by trees, instead of just also be explained?
(4) Syntax: trees for the expression of asymmetries, which could not be handled by flat structures (pace Barker 2012)
(5) Binding phenomena, structural ambiguities (blue striped suit) etc. (Everaert, Huybregts, Chomsky, Berwick \& Bolhuis 2015) - hierarchical structure essential.

Why do things happen where/when they happen?

(1) Syntax: e.g. phrase moves to get case, have features checked etc.

Why do things happen where/when they happen?

(1) Syntax: e.g. phrase moves to get case, have features checked etc.
(2) Phonology: Not the same rigour applied; often seen as mere collection of arbitrary rules (Neeleman \& van de Koot 2006).

Why do things happen where/when they happen?

(1) Syntax: e.g. phrase moves to get case, have features checked etc.
(2) Phonology: Not the same rigour applied; often seen as mere collection of arbitrary rules (Neeleman \& van de Koot 2006).
3 Not so GP: demands connection between target and trigger (Kaye, Lowenstamm \& Vergnaud 1990).

Why do things happen where/when they happen?

(1) Syntax: e.g. phrase moves to get case, have features checked etc.
(2) Phonology: Not the same rigour applied; often seen as mere collection of arbitrary rules (Neeleman \& van de Koot 2006).
3 Not so GP: demands connection between target and trigger (Kaye, Lowenstamm \& Vergnaud 1990).
(4) Finnish partitive äly-ä 'of intellect PAR.'
frontness

Why do things happen where/when they happen?

(1) Syntax: e.g. phrase moves to get case, have features checked etc.
(2) Phonology: Not the same rigour applied; often seen as mere collection of arbitrary rules (Neeleman \& van de Koot 2006).
3 Not so GP: demands connection between target and trigger (Kaye, Lowenstamm \& Vergnaud 1990).
(4) Finnish partitive äly-ä 'of intellect PAR.'
frontness

(5) Here: Phenomena that cannot be adequately explained without hierarchy.

Why do things happen where/when they happen?

(1) Syntax: e.g. phrase moves to get case, have features checked etc.
(2) Phonology: Not the same rigour applied; often seen as mere collection of arbitrary rules (Neeleman \& van de Koot 2006).
3 Not so GP: demands connection between target and trigger (Kaye, Lowenstamm \& Vergnaud 1990).
(4) Finnish partitive äly-ä 'of intellect PAR.'
frontness

(5) Here: Phenomena that cannot be adequately explained without hierarchy.
© Argument for hierarchy meaningless if phonology seen as arbitrary operations.

Interlude on elements in Government Phonology

(1) (Privative) elements replace (binary) features in vowels and consonants.

Interlude on elements in Government Phonology

(11) (Privative) elements replace (binary) features in vowels and consonants.
(2) Depending on version of GP 3-6 elements; famous subset: A, I, U. $\boldsymbol{I}[\mathrm{i}] \begin{gathered}\boldsymbol{U}[\mathrm{y}] \\ \mathbf{A I U}[\varnothing] \\ \mathbf{A}[\mathrm{e}] \\ \mathbf{A U}[\mathrm{o}]\end{gathered}$
$\mathbf{A}[\mathrm{a}]$

Interlude on elements in Government Phonology

(1) (Privative) elements replace (binary) features in vowels and consonants.
(2) Depending on version of GP 3-6 elements; famous subset: A, I, U.

(3) Elements can occur by themselves or in combination.

Interlude on elements in Government Phonology

(1) (Privative) elements replace (binary) features in vowels and consonants.
(2) Depending on version of GP 3-6 elements; famous subset: A, I, U. $\mathbf{I}[\mathrm{i}] \begin{gathered}\mathbf{I U}[\mathrm{y}] \\ \mathbf{A I U}[\phi] \\ \mathbf{A I}[\mathrm{e}] \mathbf{A U}[\mathrm{o}]\end{gathered}$
$\mathbf{A}[\mathrm{a}]$
(3) Elements can occur by themselves or in combination.
(4) I in consonants $[\mathrm{j}], \mathbf{U}$ in consonants $[\mathrm{w}], \mathbf{A}$ in consonants $[\mathrm{r}]$ etc.
(1) Setting the stage
(2) Binding in phonology

(3) Conclusion

Binding in phonology

(1) Binding theory: attempt to understand behaviour/distribution of elements within a constituent.

Binding in phonology

(1) Binding theory: attempt to understand behaviour/distribution of elements within a constituent.
(2) English, Putonghua, Japanese etc. suggest \mathbf{I} / \mathbf{U} distributed in asymmetric fashion (Pöchtrager 2009; Živanovič \& Pöchtrager 2010; Pöchtrager 2015)

Binding in phonology

(1) Binding theory: attempt to understand behaviour/distribution of elements within a constituent.
(2) English, Putonghua, Japanese etc. suggest \mathbf{I} / \mathbf{U} distributed in asymmetric fashion (Pöchtrager 2009; Živanovič \& Pöchtrager 2010; Pöchtrager 2015)
(3) Only expressible hierarchically; flat structures insufficient.

Binding in phonology

(1) Binding theory: attempt to understand behaviour/distribution of elements within a constituent.
(2) English, Putonghua, Japanese etc. suggest $\mathbf{I} \mathbf{U}$ distributed in asymmetric fashion (Pöchtrager 2009; Živanovič \& Pöchtrager 2010; Pöchtrager 2015)
(3) Only expressible hierarchically; flat structures insufficient.
(4) Tree structures not simply convenient but also necessary.

English diphthongs in GP 1.x

ai	$\{\mathbf{A}\}$	$\{\mathbf{I}\}$	ei	$\{\mathbf{A}, \mathbf{I}\}$	$\{\mathbf{I}\}$
au	$\{\mathbf{A}\}$	$\{\mathbf{U}\}$	ou	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{U}\}$
$o i$	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{I}\}$			

English diphthongs in GP 1.x

ai	$\{\mathbf{A}\}$	$\{\mathbf{I}\}$	ei	$\{\mathbf{A}, \mathbf{I}\}$	$\{\mathbf{I}\}$
au	$\{\mathbf{A}\}$	$\{\mathbf{U}\}$	ou	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{U}\}$
oi	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{I}\}$			

Complexity condition (CC) (Harris 1990: 274):
(1) "Let α and β be segments occupying the positions A and B respectively. Then, if A governs B, β must not be more complex than α."

English diphthongs in GP 1.x

ai	$\{\mathbf{A}\}$	$\{\mathbf{I}\}$	ei	$\{\mathbf{A}, \mathbf{I}\}$	$\{\mathbf{I}\}$
au	$\{\mathbf{A}\}$	$\{\mathbf{U}\}$	ou	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{U}\}$
oi	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{I}\}$			

Complexity condition (CC) (Harris 1990: 274):
(1) "Let α and β be segments occupying the positions A and B respectively. Then, if A governs B, β must not be more complex than α."
(2) Complexity: number of elements.

Diphthong oi

Problem: Complexity insufficient

Diphthong ai	Diphthong *ia	Diphthong *eu
N	*N	*N
\bigcirc	\cdots	\bigcirc
$\times \times$	\times	$\times \times$
1 \|	1 \|	
A	1 A	A, I U

Problem: Complexity insufficient

(1) Equal complexity should allow for mirror images, counter to fact.

Problem: Complexity insufficient

(1) Equal complexity should allow for mirror images, counter to fact.
(2) Complexity differential no guarantee for well-formedness.

Problem: Complexity insufficient

(1) Equal complexity should allow for mirror images, counter to fact.
(2) Complexity differential no guarantee for well-formedness.

3 Complexity fails to consider the individual nature of elements.

Conditions on A

(1) A-requirement:

Core must contain \mathbf{A}, offglide must not contain \mathbf{A}.

Conditions on A

(1) A-requirement:

Core must contain \mathbf{A}, offglide must not contain \mathbf{A}.
(2) Auxiliary assumption \#1 (Aux1):

No combination of \mathbf{I} and \mathbf{U}.
(Generally true for English: no front-rounded vowels.)

Conditions on A

(1) A-requirement:

Core must contain A, offglide must not contain \mathbf{A}.
(2) Auxiliary assumption \#1 (Aux1):

No combination of \mathbf{I} and \mathbf{U}.
(Generally true for English: no front-rounded vowels.)
(3) Auxiliary assumption \#2 (Aux2):

No position without any elements.
(For head, this follows from A-requirement.)

Logical combinations left

Assuming A-requirement, Aux1, Aux2:

Core	Offglide							
	\{\}	\{A\}	\{1)	\{U\}	$\{\mathrm{A}, \mathrm{l}\}$	$\{\mathrm{A}, \mathrm{U}\}$	$\{\mathrm{I}, \mathrm{U}\}$	$\{\mathbf{A}, \mathbf{I}, \mathbf{U}\}$
\{\}	*	*	*	*	*	*	*	*
\{A\}	*	*	\checkmark	\checkmark	*	*	*	*
\{1\}	*	*	*	*	*	*	*	*
$\{\mathrm{U}\}$	*	*	*	*	*	*	*	*
$\{\mathbf{A}, 1\}$	*	*	\checkmark	\checkmark	*	*	*	*
$\{\mathbf{A}, \mathbf{U}\}$	*	*	$\stackrel{\rightharpoonup}{*}$	\checkmark	*	*	*	*
\{ $\{1, \mathbf{U}\}$	*	*	*	*	*	*	*	*

Still 6 combinations remaining, $3+1+2$

a.			b.		
ai	\{A\}	\{1\}	ei	$\{\mathrm{A}, \mathrm{l}\}$	\{1\}
au	\{A\}	\{U\}	ou	$\{\mathbf{A}, \mathbf{U}\}$	\{U\}
oi	$\{\mathbf{A}, \mathbf{U}\}$	\{1\}			
${ }^{*}$ eu	\{A, I\}	\{U\}			

Take stock

(1) What is so special about \mathbf{A} that there are conditions on it?

Take stock

(1) What is so special about \mathbf{A} that there are conditions on it?
(2) What about the asymmetry between I and U?

The behaviour of A

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)

The behaviour of A

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)
(2) Present in non-high vowels ([a], [e], [o$] \ldots$) and coronal consonants ($[\mathrm{t}],[\mathrm{d}]$, [s], [日], [1]...).

The behaviour of A

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)
(2) Present in non-high vowels ([a], [e], [o$] \ldots$) and coronal consonants ([t$],[\mathrm{d}]$, [s], [日], [1]...).
(3) A behaves differently from other elements (Anderson \& Ewen 1987; Cobb 1995, 1997; Kaye 2000; Pöchtrager 2006, 2012; Schane 1984).

The behaviour of A

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)
(2) Present in non-high vowels ([a], [e], [o]...) and coronal consonants ([t], [d], [s], [日], [1]...).
(3) A behaves differently from other elements (Anderson \& Ewen 1987; Cobb 1995, 1997; Kaye 2000; Pöchtrager 2006, 2012; Schane 1984).
(4) "Differently": A interacts with (constituent) structure unlike other elements.

A seems to provide extra room

(1) English size restrictions: Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat). Or: $\quad \breve{V}+$ CC (mint, lift, pact).

A seems to provide extra room

(1) English size restrictions: Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat). Or: $\quad \breve{V}+$ CC (mint, lift, pact).
(2) But: V̄CC if both C's contains $\mathbf{A}(=$ coronal): fiend but not * fiemp nor * fienk, count but not *coump nor *counk, boast but not *boasp nor *boask.

A seems to provide extra room

(11) English size restrictions: Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat). Or: $\quad \breve{V}+$ CC (mint, lift, pact).
(2) But: V̄CC if both C's contains A (= coronal): fiend but not * fiemp nor *fienk, count but not *coump nor *counk, boast but not *boasp nor *boask.
(3) And: S. Br. English: clasp, task, draft - *cleesp, *toosk, *dreeft. Long vowel with A by itself when only one of the final consonants contains A. Vowel makes up for "insufficiency" of cluster.

A seems to provide extra room

(1) English size restrictions: Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat). Or: $\quad \breve{V}+C C$ (mint, lift, pact).
(2) But: V̄CC if both C's contains \mathbf{A} (= coronal): fiend but not * fiemp nor *fienk, count but not *coump nor * counk, boast but not *boasp nor *boask.
(3) And: S. Br. English: clasp, task, draft - *cleesp, *toosk, *dreeft. Long vowel with A by itself when only one of the final consonants contains A. Vowel makes up for "insufficiency" of cluster.
(4) Recurrent across languages (Pöchtrager 2012): Finnish aalto 'wave', *aalpo, *aalko.

A as structural

(1) "If it interacts with structure, make it structure".

A as structural

(1) "If it interacts with structure, make it structure".
(2) A should be replaced by a structural configuration, part of which is empty (Pöchtrager 2006, 2010b, 2012, 2018; Kaye \& Pöchtrager 2009, 2013).

A as structural

(1) "If it interacts with structure, make it structure".
(2) A should be replaced by a structural configuration, part of which is empty (Pöchtrager 2006, 2010b, 2012, 2018; Kaye \& Pöchtrager 2009, 2013).
(3) That empty structure can be used by adjacent segments (and give rise e.g. to long vowels where none is expected).

A as structural

(1) "If it interacts with structure, make it structure".
(2) A should be replaced by a structural configuration, part of which is empty (Pöchtrager 2006, 2010b, 2012, 2018; Kaye \& Pöchtrager 2009, 2013).
(3) That empty structure can be used by adjacent segments (and give rise e.g. to long vowels where none is expected).
(4) How to implement that exactly? Let's look at vowels, where \mathbf{A} used to encode openness.

Two x-bar structures on top of each other

(1) Vowel contains up to two nuclear heads $(x n, x N)$.

Two x-bar structures on top of each other

(1) Vowel contains up to two nuclear heads $(\mathrm{xn}, \mathrm{xN})$.
(2) Each head may project twice in accor-

Two x-bar structures on top of each other

(1) Vowel contains up to two nuclear heads $(\mathrm{xn}, \mathrm{xN})$.
(2) Each head may project twice in accor-

3 Projection of $x n$ on top of that of $x N$, if both are present. Maximal structure:

Meaning of xn, xN : still somewhat unclear, but linked to prosody (Pöchtrager 2021).

English vowels

(1)
[1/|]

I

English vowels

(1)

(2) Melody in lowest head, whose complement (orange) expresses tense/lax.

English vowels

(1)

(2) Melody in lowest head, whose complement (orange) expresses tense/lax.
(3) Melody in non-heads: offglides in diphthongs.

English vowels

(1)

(2) Melody in lowest head, whose complement (orange) expresses tense/lax.
(3) Melody in non-heads: offglides in diphthongs.
(4) Number of empty positions measure of openness.

Binding

(1) Asymmetry [эァ]/*[[v]:

" \mathbf{A} " = structure to replace \mathbf{A}

Binding

(1) Asymmetry [эァ]/*[$[v]$:

" \mathbf{A} " $=$ structure to replace \mathbf{A}
(2) Similarity to binding in syntax:
a. John saw Mary.
b. Mary saw John.
c. He saw himself.
d. *Himself saw he.

Binding

(1) Asymmetry $\left[⿰{ }^{\circ}\right] /{ }^{*}[$ [v] $]$:

" \mathbf{A} " $=$ structure to replace \mathbf{A}
(2) Similarity to binding in syntax:
a. John saw Mary.
c. He saw himself.
b. Mary saw John.
d. *Himself saw he.
(3) Binding: \mathbf{I} can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.

Binding formalised

Binding: I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.

(1) Binding restricts cooccurrence of elements (within a certain domain).

Binding formalised

Binding: I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.
(1) Binding restricts cooccurrence of elements (within a certain domain).
(2) α binds β iff $\alpha \mathrm{c}$-commands β.

Binding formalised

Binding: I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.
(1) Binding restricts cooccurrence of elements (within a certain domain).
(2) α binds β iff α c-commands β.
(3) Simplified. Full(er) version: Živanovič \& Pöchtrager (2010).

Binding formalised

Binding: I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.
(1) Binding restricts cooccurrence of elements (within a certain domain).
(2) α binds β iff $\alpha \mathrm{c}$-commands β.
(3) Simplified. Full(er) version: Živanovič \& Pöchtrager (2010).
(4) English [эı] (void) vs. *[عv]:

Structural asymmetry

（1）C－command requires structural asymmetry：If \mathbf{I} and \mathbf{U} were sisters，they would c－command each other；both［⿰氵工 ］and［ev］out．

Structural asymmetry

(1) C-command requires structural asymmetry: If I and \mathbf{U} were sisters, they would c-command each other; both [x] and [ev] out.
(2) Melody in lowest head? Because upper head relevant for ATR.

Structure of diphthongs

(1) Two empty positions in each (yellow); head of diphthong thus mid.

Structure of diphthongs

(1) Two empty positions in each (yellow); head of diphthong thus mid.
(2) Offglide integrated into core. Core needs certain size for that embedding.

Structure of diphthongs

(1) Two empty positions in each (yellow); head of diphthong thus mid.
(2) Offglide integrated into core. Core needs certain size for that embedding.
(3) Conversely, for offglide only one position.

Structure of diphthongs

(11) Two empty positions in each (yellow); head of diphthong thus mid.
(2) Offglide integrated into core. Core needs certain size for that embedding.
(3) Conversely, for offglide only one position.
(4) Adequate reinterpretation of " \mathbf{A} in core, no \mathbf{A} in offglide".

Urgent questions

(1) What's the independent support?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Mandarin has reverse linear order.

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Mandarin has reverse linear order.
- Could thus not be handled by linear approach.

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Mandarin has reverse linear order.
- Could thus not be handled by linear approach.
- Crucially, hierarchical approach required.

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Mandarin has reverse linear order.
- Could thus not be handled by linear approach.
- Crucially, hierarchical approach required.
(3) The claim: C-command, relying on hierarchy, essentially correct.

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Mandarin has reverse linear order.
- Could thus not be handled by linear approach.
- Crucially, hierarchical approach required.
(3) The claim: C-command, relying on hierarchy, essentially correct.
(4) Furthermore: same asymmetries come back at different levels.

Mandarin rhymes (i.e. without onsets)

(1) 6 relevant cases: (Živanovič \& Pöchtrager 2010; Pöchtrager 2015)

Mandarin rhymes (i.e. without onsets)

(1) 6 relevant cases: (Živanovič \& Pöchtrager 2010; Pöchtrager 2015)
a.

onglide	core	offglide
$[\mathrm{i}]$	$[\mathrm{e}]$	
	"mid"	
I	\rightarrow	

b.

onglide	core	offglide
$[\mathrm{i}]$	$[\mathrm{O}]$	$[\mathrm{u}]$
	"mid"	
I	\leftarrow	\mathbf{U}

onglide $[u]$	core $[\mathrm{O}]$	offglide
	"mid"	
\mathbf{U}	\rightarrow	

onglide $[\mathrm{u}]$	core $[\mathrm{e}]$	offglide $[\mathrm{i}]$
	"mid"	
\mathbf{U}	\leftarrow	\mathbf{I}

onglide	core	offglide
$[i]$	$[\mathrm{a}]$	$[\mathrm{u}]$
	"low"	
\mathbf{I}		\mathbf{U}

A2

Mandarin rhymes (i.e. without onsets)

(1) 6 relevant cases: (Živanovič \& Pöchtrager 2010; Pöchtrager 2015)
a.

onglide	core	offglide
$[i]$	$[\mathrm{e}]$	
	"mid"	
I	\rightarrow	

b.

onglide	core	offglide
$[\mathrm{i}]$	$[\mathrm{o}]$	$[\mathrm{u}]$
	"mid"	
\mathbf{I}	\leftarrow	\mathbf{U}

onglide $[\mathrm{u}]$	core $[\mathrm{e}]$	offglide $[\mathrm{i}]$
	"mid"	
\mathbf{U}	\leftarrow	\mathbf{l}

onglide	core	offglide
$[i]$	$[\mathrm{a}]$	$[\mathrm{u}]$
	"low"	
\mathbf{I}		\mathbf{U}

*	onglide	core	offglide)
	[u]	[a]	[i]	
		"low"		
	U		I	

(2) Observations:

- Core must have a certain minimal size (openness); cf. English.
- Asymmetry with respect to sharing (arrows, asymmetry A1)
- Asymmetry with respect to \mathbf{I} / \mathbf{U}; [iau]/*[uai] (asymmetry A2)

Mandarin rhymes (i.e. without onsets)

(1) 6 relevant cases: (Živanovič \& Pöchtrager 2010; Pöchtrager 2015)
a.

onglide	core	offglide
$[\mathrm{i}]$	$[\mathrm{e}]$	
	"mid"	
I	\rightarrow	

b.

onglide	core	offglide
$[\mathrm{i}]$	$[\mathrm{o}]$	$[\mathrm{u}]$
	"mid"	
\mathbf{I}	\leftarrow	\mathbf{U}

onglide	core	offglide
$[i]$	$[\mathrm{a}]$	$[\mathrm{u}]$
	"low"	
\mathbf{I}		\mathbf{U}

onglide $[\mathrm{u}]$	core $[\mathrm{o}]$	offglide
	"mid"	
\mathbf{U}	\rightarrow	

onglide $[\mathrm{u}]$	core $[\mathrm{e}]$	offglide $[\mathrm{i}]$
	"mid"	
\mathbf{U}	\leftarrow	\mathbf{I}

* $\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { onglide } \\ {[\mathrm{u}]}\end{array} & \text { core } & \text { offglide } \\ \hline & {[\mathrm{a}]} & {[\mathrm{i}]} \\ \hline \mathbf{U} & \text { "low" } & \\ \hline\end{array}\right\} \mathbf{I} 2$
(2) Observations:
- Core must have a certain minimal size (openness); cf. English.
- Asymmetry with respect to sharing (arrows, asymmetry A1)
- Asymmetry with respect to \mathbf{I} / \mathbf{U}; [iau]/*[uai] (asymmetry A2)
(3) (Note: there is [uai], but with different constituent structure.)

First asymmetry (A1)

First asymmetry (A1)

(1)

onglide	core	offglide
$[\mathrm{i}]$	$[\mathrm{e}]$	
	"mid"	
\mathbf{I}	\rightarrow	

b.

onglide	core	offglide
$[$ i]	$[\mathrm{o}]$	$[\mathrm{u}]$
	"mid"	
\mathbf{I}	\leftarrow	\mathbf{U}

$\begin{array}{c}\text { onglide } \\ {[\mathrm{u}]}\end{array}$	$\begin{array}{c}\text { core } \\ {[\mathrm{o}]}\end{array}$	offglide
"mid"		
\mathbf{U}	\rightarrow	
$\begin{array}{\|c\|c\|c\|}\hline \text { onglide } \\ {[\mathrm{u}]}\end{array}$	$\begin{array}{c}\text { core } \\ {[\mathrm{e}]}\end{array}$	$\begin{array}{c}\text { offglide } \\ {[\mathrm{i}]}\end{array}$
	"mid"	
\mathbf{U}	\leftarrow	\mathbf{I}

(2) Sharing the melody: Right (offglide) takes precedence over left (onglide).

Flat vs. hierarchical

(1) Reminiscent of syntactic "closeness":

(lit. "come me on-behalf-of"), pronoun gets case from postposition.

Flat vs. hierarchical

(1) Reminiscent of syntactic "closeness":

(lit. "come me on-behalf-of"), pronoun gets case from postposition.
(2) Linearly, mir is equidistant to verb and postposition, hierarchically (definable in terms of c-command) closer to postposition.

Flat vs. hierarchical

(1) Reminiscent of syntactic "closeness":

(lit. "come me on-behalf-of"), pronoun gets case from postposition.
(2) Linearly, mir is equidistant to verb and postposition, hierarchically (definable in terms of c-command) closer to postposition.
(3) Right precedence over left follows from hierarchy.

General structure of the nucleus

(1) Tree structure captures asymmetry/closeness (c-command).

General structure of the nucleus

(1) Tree structure captures asymmetry/closeness (c-command).
(2) Orange part embeds offglide and expresses openness of core.

General structure of the nucleus

(1) Tree structure captures asymmetry/closeness (c-command).
(2) Orange part embeds offglide and expresses openness of core.
(3) Same structure required by A 1 will also explain A2.

and *

Onglide and offglide:

and *

Onglide and offglide:

(1) \mathbf{U} closer to $\times \mathrm{N}$ than \mathbf{I} is, spreads into it.

Onglide and offglide:

(1) \mathbf{U} closer to $\times \mathrm{N}$ than \mathbf{I} is, spreads into it.
(2) \mathbf{U} thus interpreted as part of the mid vowel represented by core: $[0]$.

Onglide and offglide:

(1) \mathbf{U} closer to $\times \mathrm{N}$ than \mathbf{I} is, spreads into it.
(2) \mathbf{U} thus interpreted as part of the mid vowel represented by core: $[0]$.
(3) *[ieu] impossible because closer spreader (U) skipped: minimality.

(1) This time, \mathbf{I} is closer.

(1) This time, \mathbf{I} is closer.
(2) *[uoi] out for the same reason as *[ieu] was.

(1) Onglide but no offglide, so onglide can colour core.

, and the second asymmetry (A2)

(1) A1: Offglide closer to core than onglide, requires asymmetric structure.

, and the second asymmetry (A2)

(1) A1: Offglide closer to core than onglide, requires asymmetric structure.
(2) That same structure, together with binding, explains asymmetry A2 as well.

, and the second asymmetry (A2)

(1) A1: Offglide closer to core than onglide, requires asymmetric structure.
(2) That same structure, together with binding, explains asymmetry A2 as well.
(3) Again, I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}; just like in English.

, and the second asymmetry (A2)

(1) A1: Offglide closer to core than onglide, requires asymmetric structure.
(2) That same structure, together with binding, explains asymmetry A2 as well.
(3) Again, I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}; just like in English.
(4) Offglide does not make it into $\times \mathrm{N}$ (distance?), gives [a].

(1) Both A 1 and A 2 follow from the proposed structure.

(1) Both A 1 and A 2 follow from the proposed structure.
(2) In both cases \mathbf{U} c-commands I.

(1) Both A 1 and A 2 follow from the proposed structure.
(2) In both cases \mathbf{U} c-commands \mathbf{I}.
(3) If \mathbf{U} must not bind \mathbf{I}, then how could [uei] ever be possible?

(1) Both A 1 and A 2 follow from the proposed structure.
(2) In both cases \mathbf{U} c-commands I.
(3) If \mathbf{U} must not bind \mathbf{I}, then how could [uei] ever be possible?
(4) [uei]: I spreads; seems to "immunise" against binding (creates island).

I/U asymmetries widespread

(1) $\mathbf{I} \mathbf{U}$ asymmetries can be found in pretty much any language.

I/U asymmetries widespread

(1) \mathbf{I} / \mathbf{U} asymmetries can be found in pretty much any language.
(2) Should allow us to submit the theory of binding to a large-scale scrutiny.

Japanese glide+vowel sequences

(1) Another example: Japanese glide+vowel sequences.

Japanese glide+vowel sequences

(1) Another example: Japanese glide+vowel sequences.
(2) Yoshida (1996: 28): severe restrictions on sequences of glide plus vowel.

Japanese glide+vowel sequences

(1) Another example: Japanese glide+vowel sequences.
(2) Yoshida (1996: 28): severe restrictions on sequences of glide plus vowel.

3

Binding gets Japanese for free

(1) All we need to assume is:

Binding gets Japanese for free

(1) All we need to assume is:
i. No self-binding (element cannot bind itself), also in Mandarin. (Blue)
ii. U cannot bind I just like in English, Mandarin etc. (Red)

Binding gets Japanese for free

(1) All we need to assume is:
i. No self-binding (element cannot bind itself), also in Mandarin. (Blue)
ii. U cannot bind I just like in English, Mandarin etc. (Red)
(2) y-series: *yi *ye ya yo yu
w-series: *wi *we wa *wo *wu

Vowel harmony

(1) Presence of U-harmony in a language typically implies I-harmony.

Vowel harmony

(1) Presence of U-harmony in a language typically implies I-harmony.
(2) Also, U-harmony subject to more restrictions than I-harmony (Kaun 1995).

Vowel harmony

(1) Presence of U-harmony in a language typically implies I-harmony.
(2) Also, U-harmony subject to more restrictions than I-harmony (Kaun 1995).
(3) Turkish I spreads to all (short) nuclei; U only to high targets (Charette \& Göksel 1996; Polgárdi 1998; Pöchtrager 2010a).

Vowel harmony

(1) Presence of U-harmony in a language typically implies I-harmony.
(2) Also, U-harmony subject to more restrictions than I-harmony (Kaun 1995).
(3) Turkish I spreads to all (short) nuclei; U only to high targets (Charette \& Göksel 1996; Polgárdi 1998; Pöchtrager 2010a).
(4) Can (some of the) asymmetries be derived from Binding?

Vowel harmony and Binding

(1) $[y]: \mathbf{I} \& \mathbf{U}$.

Vowel harmony and Binding

(1) $[y]: \mathbf{I} \& \mathbf{U}$.
(2) Could in theory arise by
(1) I spreading onto u (Finnish, Hungarian) or
(2) \mathbf{U} spreading onto i (unattested).

Vowel harmony and Binding

(1) $[y]: \mathbf{I} \& \mathbf{U}$.
(2) Could in theory arise by
(1) I spreading onto u (Finnish, Hungarian) or
(2) \mathbf{U} spreading onto i (unattested).
(3) Assume that 'entry point" is on top of the targeted vowel.

Vowel harmony and Binding

(1) $[y]: \mathbf{I} \& \mathbf{U}$.
(2) Could in theory arise by
(1) I spreading onto u (Finnish, Hungarian) or
(2) \mathbf{U} spreading onto i (unattested).
3 Assume that 'entry point" is on top of the targeted vowel.
(4) Would require \mathbf{U} to
c-command I, ruled out by binding.

Grammatical Ungrammatical "creation" of [y]

$[i C u] \rightarrow[i C y]$
"creation" of [y]

$[u C i] \rightarrow[u C y]$

More I/U asymmetries

(1) Turkish, Finnish, French (word-finally): two e-type vowels (involving I), but only one o-type vowel (involving U) (Pöchtrager 2009).

More I/U asymmetries

(1) Turkish, Finnish, French (word-finally): two e-type vowels (involving I), but only one o-type vowel (involving U) (Pöchtrager 2009).
(2) English no front vowels: "I and \mathbf{U} must not combine" - would follow if \mathbf{I} and \mathbf{U} could shown to be forced into an illicit configuration.

More I/U asymmetries

(1) Turkish, Finnish, French (word-finally): two e-type vowels (involving I), but only one o-type vowel (involving U) (Pöchtrager 2009).
(2) English no front vowels: "I and \mathbf{U} must not combine" - would follow if \mathbf{I} and \mathbf{U} could shown to be forced into an illicit configuration.
(3) Binding might serve as a test to probe into internal structure of those objects.

More I/U asymmetries

(1) Turkish, Finnish, French (word-finally): two e-type vowels (involving I), but only one o-type vowel (involving U) (Pöchtrager 2009).
(2) English no front vowels: "I and \mathbf{U} must not combine" - would follow if \mathbf{I} and \mathbf{U} could shown to be forced into an illicit configuration.
(3) Binding might serve as a test to probe into internal structure of those objects.
(4) Only seems possible in hierarchical models, not in purely linear ones.
(1) Setting the stage
(2) Binding in phonology

(3) Conclusion

Conclusion

(1) Hierarchy \& recursion not only useful, but necessary for phonology.

Conclusion

(1) Hierarchy \& recursion not only useful, but necessary for phonology.
(2) Applying syntactic thinking to phonological problems turns out to yield fruitful results.

Conclusion

(1) Hierarchy \& recursion not only useful, but necessary for phonology.
(2) Applying syntactic thinking to phonological problems turns out to yield fruitful results.
(3) The machinery used by syntax and phonology to build structure might not be so different after all, while there certainly is a difference in the set of objects glued together.

Conclusion

(1) Hierarchy \& recursion not only useful, but necessary for phonology.
(2) Applying syntactic thinking to phonological problems turns out to yield fruitful results.
(3) The machinery used by syntax and phonology to build structure might not be so different after all, while there certainly is a difference in the set of objects glued together.

Thank you!

References I

Anderson, John (1992): Linguistic Representation: Structural Analogy and Stratification. Berlin: Mouton de Gruyter.
Anderson, John (2003): Contrast in phonology, structural analogy, and the interfaces. Manuscript.
Anderson, John \& Ewen, Colin J. (1987): Principles of Dependency Phonology. Cambridge: Cambridge University Press.
Barker, Chris (2012): Quantificational Binding Does Not Require C-Command. Linguistic Inquiry, 43, 4, 614-633.
Broadbent, Judith M. (1991): Linking and Intrusive r in English. UCL Working Papers in Linguistics, 3, 281-301.
Bromberger, Sylvain \& Halle, Morris (1989): Why Phonology Is Different. Linguistic Inquiry, 20, 1, 51-70.
Charette, Monik \& Göksel, Asli (1996): Licensing constraints and vowel harmony in Turkic languages. SOAS Working Papers in Linguistics \& Phonetics, 6, 1-25.
Cobb, Margaret (1995): Vowel Harmony in Zulu and Basque: The Interaction of Licensing Constraints, H-Licensing and Constituent Structure. SOAS Working Papers in Linguistics \& Phonetics, 5, 23-39.
Cobb, Margaret (1997): Conditions on Nuclear Expressions in Phonology. Ph.D. thesis, School of Oriental and African Studies, University of London, London, UK.
Cyran, Eugeniusz (1997): Resonance Elements in Phonology. A Study in Munster Irish. Lublin: Wydawnictwo Folium.
Everaert, Martin B. H., Huybregts, Marinus A. C., Chomsky, Noam, Berwick, Robert C. \& Bolhuis, Johan J. (2015): Structures, Not Strings: Linguistics as Part of the Cognitive Sciences. Trends in Cognitive Sciences, 19, 12, 729-743.

References II

García-Bellido, Paloma (2005): The morphosyntax and syntax of Phonology: The svarabhakti construction in Spanish. Estudios de Lingüística del Español, 22.
Harris, John (1990): Segmental complexity and phonological government. Phonology, 7, 2, 255-301.
Harris, John (1994): English Sound Structure. Oxford et al.: Blackwell.
Jackendoff, Ray (2007): Language, Consciousness, Culture. Essays on Mental Structure. Cambridge \& London: The MIT Press.

Kaun, Abigail Rhoades (1995): The Typology of Rounding Harmony: An Optimality Theoretic Approach. Ph.D. thesis, University of California, Los Angeles, CA.
Kaye, Jonathan (1990): 'Coda’ Licensing. Phonology, 7, 2, 301-330.
Kaye, Jonathan (2000): A User's Guide to Government Phonology (GP). Ms.
Kaye, Jonathan, Lowenstamm, Jean \& Vergnaud, Jean-Roger (1985): The internal structure of phonological elements: a theory of charm and government. Phonology Yearbook, 2, 303-328.
Kaye, Jonathan, Lowenstamm, Jean \& Vergnaud, Jean-Roger (1990): Constituent structure and government in phonology. Phonology, 7, 2, 193-231.
Kaye, Jonathan \& Pöchtrager, Markus A. (2009): GP 2.0. Paper presented at the "Government Phonology Round Table", April 25, 2009, Piliscsaba/Hungary.
Kaye, Jonathan \& Pöchtrager, Markus A. (2013): GP 2.0. SOAS Working Papers in Linguistics \& Phonetics, 16, 51-64.
Neeleman, Ad \& van de Koot, J. (2006): On syntactic and phonological representations. Lingua, 116, 1524-1552.
Nespor, Marina \& Vogel, Irene (1986): Prosodic Phonology. Dordrecht: Foris.
Pöchtrager, Markus A. (2006): The Structure of Length. Ph.D. thesis, University of Vienna, Vienna.

References III

Pöchtrager, Markus A. (2009): Does Turkish Diss Harmony. Paper presented at the "6th Old World Conference in Phonology (OCP6), January 21-24, 2009, Edinburgh.
Pöchtrager, Markus A. (2010a): Does Turkish Diss Harmony? Acta Linguistica Hungarica, 57, 4, 458-473.
Pöchtrager, Markus A. (2010b): The Structure of A. Paper presented at the " $33^{\text {rd }}$ GLOW Colloquium", 13-16 April 2010, Wrocław, Poland.
Pöchtrager, Markus A. (2012): Deconstructing A. Paper presented at the "MFM Fringe Meeting on Segmental Architecture", 23 May 2012, University of Manchester, UK.
Pöchtrager, Markus A. (2015): Binding in Phonology. In: Henk van Riemsdijk \& Marc van Oostendorp (eds.) Representing Structure in Phonology and Syntax, Berlin: Mouton de Gruyter. 255-275.
Pöchtrager, Markus A. (2018): Sawing off the branch you are sitting on. Acta Linguistica Academica, 65, 1, 47-68.
Pöchtrager, Markus A. (2020): Recursion and GP 2.0. In: Kuniya Nasukawa (ed.) Morpheme-internal Recursion in Phonology, Berlin: De Gruyter/Mouton. 237-266.
Pöchtrager, Markus A. (2021): English vowel structure and stress in GP 2.0. In: Sabrina Bendjaballah, Ali Tifrit \& Laurence Voeltzel (eds.) Perspectives on Element Theory, Berlin: Mouton de Gruyter. 157-183. URL https://doi.org/10.1515/9783110691948.
Polgárdi, Krisztina (1998): Vowel Harmony. An Account in Terms of Government and Optimality. The Hague: Holland Academic Graphics.
Schane, Sanford A. (1984): The fundamentals of particle phonology. Phonology Yearbook, 1, 129-155.
Scheer, Tobias (2004): A Lateral Theory of Phonology. Volume I: What is CVCV and why should it be? Berlin: Mouton de Gruyter.

References IV

Scheer, Tobias (2012): A Lateral Theory of Phonology. Volume II: Direct Interface and One-Channel Translation. A Non-Diacritic Theory of the Morphosyntax-Phonology Interface. Berlin: Mouton de Gruyter.
van der Hulst, Harry (2006): On the parallel organization of linguistic components. Lingua, 116, 657-688.
van der Hulst, Harry (2010a): A note on recursion in phonology. In: van der Hulst (2010c), 301-342.
van der Hulst, Harry (2010b): Re recursion. In: van der Hulst (2010c), xv-liii.
van der Hulst, Harry (ed.) (2010c): Recursion and Human Language. Berlin, New York: Mouton de Gruyter.

Živanovič, Sašo \& PÖchtrager, Markus A. (2010): GP 2.0 and Putonghua, too. Acta Linguistica Hungarica, 57, 4, 357-380.
Yoshida, Shohei (1996): Phonological Government in Japanese. Canberra: The Australian National University.

