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Abstract

Nowadays, various pre-trained language mod-
els based on representation learning are con-
stantly being developed and have achieved
splendid performance in the application of var-
ious natural language processing (NLP) tasks
by fine-tuning. Sentence Transformer mod-
els provide with the possibility to embed sen-
tences and compare the semantic similarity be-
tween sentences by creating a siamese and
triplet networks based on pre-trained Trans-
former models. The paper fine-tunes a Sen-
tence Transformer model and applies it to the
question answering (QA) task by answer se-
lection. To be more specific, we use the fine-
tuned sentence transformer model to select
the proper answers to a given question from
a given pool of candidate answers. The ex-
periment results show that by fine-tuning, the
accuracy can be improved significantly from
0.2664 to 0.4867. Further research should be
done on fine-tuning more models and training
on more domain data.

1 Introduction

Language representation models have been a pop-
ular topic and constantly show its power in vari-
ous fields of natural language processing (NLP)
tasks with the rapid development of deep neural
networks in the past years. The network architec-
ture Transformer, which is based solely on attention
mechanisms and entirely dispenses recurrences and
convolutions (Vaswani et al., 2017), is commonly
applied by many language models. Language mod-
els are usually pre-trained language representations
from a large amount of unlabeled texts, such as
BERT (Devlin et al., 2019) and many of its variants
like RoBERTa (Liu et al., 2019), TinyBERT (Jiao
et al., 2020) etc. By fine-tuning the pre-trained
models, many downstream tasks can be processed,
such as text classification, sequence labeling, lan-
guage inference, machine translation and so on.

Most language models operate on the word level,
i.e. represent words with a series of numbers,
namely vectors. A common method used to repre-
sent words and their semantic meanings and syntac-
tic information in a context is the word embedding.
However, language representation can be carried
out on a higher level, that is to say, sentences and
even documents can also be represented or em-
bedded, corresponding to sentence embedding and
document embedding. Sentence Transformer is a
model based on the Transformer for state-of-the-
art sentence embeddings, which can be for certain
tasks including large-scale semantic similarity com-
parison, clustering and information retrieval via
semantic search (Reimers and Gurevych, 2019).

Question answering (QA) is a classical NLP task
and can be applied in many fields, such as search en-
gine, chatbot, information retrieval, conversational
AI etc. QA is basically a system that allows a user
to ask a question in natural language and receive
an answer quickly and succinctly, with sufficient
context to validate the answer (HIRSCHMAN and
GAIZAUSKAS, 2001). Currently, most influential
spoken dialog system include a question answering
module, e.g. Apple’s Siri, IBM’s Watson and son
on. Feng et al. (2015) previously looked at QA
from an answer matching and selection perspective.
This paper adopts their perspective towards QA as
well.

This paper combines the Sentence Transformer
and QA. We apply Sentence Transformer model
to the QA task by sentence matching and seman-
tic similarity comparison. The goal is to train a
sentence transformer model which can be used to
select the proper answers to a given question from
a given pool of candidate answers. The goal can
then be divided into two subtasks: (1) How is the
sentence transformer model trained? (2) How is
the model applied to answer selection? We firstly
select a pre-trained Sentence Transformer model



and then fine-tune it with the training QA dataset.
After comparing several different language mod-
els, we select the TinyBERT and base our Sentence
Transformer model on it. Each question in the train-
ing dataset is aligned with a true answer labeling 1
and a false answer labeling 0. In this way, a train-
ing dataset composed of sentence pairs and labels
is constructed. The model is fine-tuned by maxi-
mizing the cosine similarity between question and
true answer and minimizing the cosine similarity
between question and false answer. The cosine sim-
ilarity loss function is adopted. With the fine-tuned
Sentence Transform model, we evaluate its perfor-
mance on test QA dataset. In the test QA dataset,
each question is provided with a pool of candidate
answers and a set of truth answers. We calculate
the similarity between the question and every can-
didate in the pool using the fine-tuned Sentence
Transformer model and then select the best can-
didate as true answer. If the selected answer lies
in the set of truth answers, then the question is
correctly answered by the QA system, otherwise
wrongly. Last but not least, we calculate the accu-
racy of the overall test data.

The paper is structured in the following way:
Section 1 introduces the background and basic in-
formation of the work. Section 2 is about the previ-
ous work related to the topics in this paper. Section
3 explains the specific methodology of the process
of the work and how the model is established. In
section 4, we evaluate the performance results of
the methodology on QA tasks. Section 5 concludes
the work in this paper.

2 Related Work

In this section, we first introduce the study on lan-
guage model, which is the basis of the work. Then,
we discuss the study on sentence embedding meth-
ods. The last part is on the study of QA tasks.

2.1 Language Representation and Language
Models

The state-of-the-art pre-trained language models
can well represent language and significantly im-
prove the performance of various tasks in the NLP
field. BERT is a pre-trained deep bidrectional
Transformer network using two unsupervised pre-
training tasks, Masked LM and Next Sentence Pre-
diction (Devlin et al., 2019), so that a model rep-
resenting the internal syntactic and semantic infor-
mation of language can be created.

Many further studies focus on the improvement
of BERT and some variants of BERT performing
better than the original base in specified fields of
tasks are given to birth. RoBERTa (Liu et al., 2019)
optimized BERT by measuring the impact of hy-
perparameters and training data size. Jiao et al.
(2020) introduced the knowledge distillation (KD)
method of Transformer-based models into Tiny-
BERT, which transferred large BERT model to a
smaller one.

BERT network structures are based on word em-
beddings. No independent sentence embeddings
are computed. BERT has its setup dealing with the
similarity of sentence pair by inputting BERT two
sentences separated by a special token and can be
applied on the Semantic Textual Similarity (STS)
benchmark (Cer et al., 2017).

2.2 Sentence Embeddings

A simple method to produce sentence embeddings
is averaging the word embeddings of words in a
sentence into a sentence embedding, for example,
Joulin et al. (2016) set a baseline using the method
for text classification. However, this method is not
powerful enough when dealing with more compli-
cated tasks.

Researchers tried several different kinds of meth-
ods to derive sentence embeddings from the outputs
of language models. May et al. (2019) passed sin-
gle sentences through BERT and derived a fixed
sized vector by averaging the outputs. Qiao et al.
(2019) used the output of a special token as the
sentence embedding to represent the sentence in
their study. However, according to Reimers and
Gurevych (2019), there is not evaluation or evi-
dence yet on how useful are the sentence embed-
dings created in these methods.

Akbik et al. (2019) developed an NLP frame-
work, FLAIR, designed to simply mix and match
different types of word embeddings with minimal
effort, where two types of sentence embeddings
are also included, i.e. Document Pool Embeddings
and Document RNN embeddings. Document Pool
Embeddings do a pooling operation over all word
embeddings in a sentence to obtain an embedding
for the whole sentence. Document RNN Embed-
dings run a recurrent neural network (RNN) over
all words in sentence and use the final state of the
RNN as embedding for the whole document.

Reimers and Gurevych (2019) presented SBERT
model to yield useful sentence embeddings by fine-



tuning pre-trained BERT network. SBERT firstly
adds a pooling operation to the output of BERT to
derive a fixed sized sentence embedding. Then, the
weights and parameters are updated by creating a
siamese and triplet networks (Schroff et al., 2015).
After the fine-tuning, the produced sentence em-
beddings are more semantically meaningful, can
be compared with cosine similarity and applied to
specific tasks like QA.

2.3 Question Answering

In information retrieval and NLP, QA is the task of
automaticcaly providing an answer for a question
asked by a human in natural language (Bouziane
et al., 2015). Lopez et al. (2011) divided QA task
into three subtasks: question analysis, document
retrieval and answer extraction.

Ishwari et al. (2019) reviewed the development
of natural language question answering. Tradi-
tional question answering systems were logical rep-
resentations of decision trees based on grammatical
rules, reflecting the way humans understand text.
This approach is called rule-based approach. On-
tology based QA systems take queries expressed
in natural language and a given ontology as input,
and return answers drawn from one or more knowl-
edge bases that subscribe to the ontology. Deep
learning methods allow a machine to be fed with
raw data and to automatically discover the repre-
sentations needed. Induction of neural networks for
QA brings more possibilities. Feng et al. (2015) ap-
plied CNN-based system to address the non-factoid
question answering task in the insurance domain.

3 Methodology

The paper fine-tunes a pre-trained Sentence Trans-
former model for answer selection, a question an-
swering task. To be more specific, the goal of the
work is to train a sentence transformer model which
can be used to select the proper answers to a given
question from a given pool of candidate answers.
The goal can then be divided into two subtasks: (1)
How is the sentence transformer model trained? (2)
How is the model applied to answer selection? The
original train and evaluation data set have the same
format, but are used and processed differently in
two subtasks. More datails on the format of the
data set are introduced in the following subsection
3.1

The sentence transformer model is built based
on a pre-trained transformer model. The structure

Figure 1: Sentence Transformer Architecture.

of a sentence transformer model is shown in Figure
1. The siamese networks of a sentence transformer
model are created based on pre-trained language
models. We input two language models with the
same parameters separately sentence A and B. Af-
ter pooling layer, two sentence embeddings u and v
are created and then the cosine similarity between u
and v is computed. The objective function used in
the model is mean-squared-error (MSE) loss. The
fine-tuned Sentence Transformer model can then
be applied for insurance QA task by calculating
the sentence pair similarity between question and
candidate answers in the pool. The returned answer
by the QA system is the candidate with the highest
cosine similarity.

3.1 Dataset Description

The dataset used in the work is InsuranceQA Cor-
pus1, which was created by researchers of IBM
Watson who applied it to training a CNN model to
solve QA task (Feng et al., 2015). It contains ques-
tions and answers in the insurance domain from the
website Insurance Library2. The contents of the
corpus are the user questions from the real world
and the answers with high quality composed by
professionals with expert domain knowledge. In
the data set, each question has a pool of 100 possi-

1https://github.com/shuzi/insuranceQA
2https://www.insurancelibrary.com/



No. Model Name Accuracy Running Time
1 average word embeddings komninos 0.0875 58.271 s
2 paraphrase-distilroberta-base-v2 0.2417 4440.939 s
3 paraphrase-MiniLM-L3-v2 0.2241 1182.681 s
4 paraphrase-MiniLM-L6-v2 0.2447 1827.053 s
5 paraphrase-MiniLM-L12-v2 0.2661 3117.037 s
6 paraphrase-mpnet-base-v2 0.2825 9489.678 s
7 paraphrase-TinyBERT-L6-v2 0.2664 5069.734 s
8 stsb-mpnet-base-v2 0.1575 7183.301 s
9 stsb-roberta-base-v2 0.1507 6456.512 s

Table 1: Performance of different pre-trained Sentence Transformer models on the insurance QA task.

ble answers, some of which are true answers (the
so-called ground truth). The pool is built by using
a general search engine like Google Search or an
information retrieval software library like Apache
Lucene and the data set is created by collecting
question and answer pairs from the internet.

The corpus is composed of training and eval-
uation two parts. In the original dataset, the
tokens are represented by their indexes instead
of character forms. For all tokens starting with
idx , we need to refer to the vocabulary file of-
fered by the corpus for the corresponding word.
The training and evaluation files have the same
format: <Domain><TAB><QUESTION><TAB>
<Groundtruth><TAB><Pool>. <Domain>
means the subclass of the question topic.
<question> is represented by the tokens in the
form of index. <Groundtruth> is the set of cor-
rect answers and <Pool> consists of all possible
answers. Both <Goundtruth> and <Pool> is
represented by the label of answers, so there is an
extra file mapping labels to answers (represented
by token indexes) in the corpus.

There are 12,889 questions with 107,889 running
words in the training set and 4,000 questions with
33,746 running words in the evaluation data. Each
question has a pool of answers with the number of
100. There are totally 27,413 answers in the answer
set file with 3,065,492 running words.

3.2 Data Preparation

The data preparation work is divided into two parts.
The first part is to create training data from the
corpus for the model fine-tuning. The second is to
prepare the evaluation data for the evaluation of the
QA system.

Preparation of Training Data To train the sen-
tence transformer model, sentence pairs with label

are required. So for each question in the original
train data set, we create two sentence pairs to com-
pose the train data set that can be directly applied
to training the sentence transformer model. One
sentence pair has a positive label, i.e. 1. We se-
lected the first answer from the <Goundtruth>
(the correct answer set) to compose the positive sen-
tence pair. On the contrary, the other sentence pair
has a negative label, i.e. 0. We randomly selected
an answer from the wrong answers to compose the
negative sentence pair.

Preparation of Evaluation Data Evaluation
data are used to evaluate the accuracy of the QA
task of the fine-tuned model. What we do here is
transfer index sentences into word sentences and
match question label to its ground truth and pool.

3.3 Model Selection

Regarding fine-tuning the model, the first step we
do is select a pre-trained Sentence Transformer
model for later fine-tuning on the insurance QA
dataset. Tabel 1 shows the evaluation result of
different pre-trained Sentence Transformer models
on the insurance QA task.

In Model 1, the sentence embeddings derived
from word embeddings simply by mean pooling
are used. Since it does not use the neural networks,
the running time is very fast, while the accuracy
is rather low. Model 2-7 use the same training
dataset, which has a variety of sources, such as
AIINLI, SimpleWiki, Yahoo answers title question
etc. Model 8-9 use the benchmark of NLI and
STSb as training data. Model 3-5 are fine-tuned
based on the MiniLM language model of Mircosoft.
Model 2, 7 and 9 use the variant of BERT as base
model. Model 6 and 8 use the MPNet model of
Microsoft, which combines the advantage of BERT
and XLNet by unifying the trained tasks of both



Pre-trained Model without Fine-Tuning
Name paraphrase-TinyBERT-L6-v2
Accuracy. 0.2664
Runtime 5069.734 s
Pre-trained Model with Fine-Tuning
Name paraphrase-TinyBERT-L6-v2
Accuracy. 0.4867
Runtime 5651.248 s

Table 2: Result of fine-tuned Sentence Transformed
applied to the insurance QA task.

models, masked language modeling and permuted
language modeling, in one view (Song et al., 2020).

According to the result in Table 1, Sentence
Transformers trained on the paraphrase have over-
all better performance than models trained on NLI
and STS. The reason could lie in that paraphrase
training tasks are more similar to the QA tasks.
Both are related to sentence pair matching. Taking
both accuracy and running time into account, we
finally select model 7 “paraphrase-TinyBERT-L6-
v2” as the pre-trained Sentence Transformer model
to be fine-tuned for the insurance QA task.

3.4 Fine-Tuning Details

We fine-tune the pre-trained Sentence Transformer
model “paraphrase-TinyBERT-L6-v2” using the
training data introduced in section 3.2. The training
dataset is a collection of 25,778 question answer
pairs, half of which are annotated with label 1,
the other half with label 0. We used a batch size
of 64, one epoch and cosine similarity loss and
a linear learning rate warm-up over 10% of the
training data. We also set an evaluator composed
from 1,000 sentence pairs in the training data to
evaluate the model during the training. The number
of evaluation steps is 2,000.

4 Evaluation

The role of the well-trained (fine-tuned) sentence
transformer model in the QA task (i.e. answer
selection from the pool) is to compute the sen-
tence similarity. At the beginning, we tried sev-
eral methods of applying the fine-tuned Sentence
Transformer model to address the QA task. Since
the answers in the data set are often quite long
and could even be composed of several sentences,
we considered if it would be better to sentence-
tokenize the answer firstly and then compute the
similarity between question and each single sen-

tence in the answer. However, after several trials,
we found the accuracy was significantly lower than
regarding the whole answer as one ”big” sentence.

We also attempted to collect all tokenized sen-
tences and to rank the cosine similarity between all
sentences and a question. Then we selected the n
best sentences and calculated how many selected
sentences each answer contains. At last, we select
the answer with the most sentences to be the best
answer. However, not only is the efficiency of this
method less than the original one, but its accuracy
is also worse.

4.1 Evaluation Method

The evaluation method we finally adopted is the
most straightforward one. The fine-tuned Sentence
Transformer is applied directly to the question and
the candidate answers in the pool. Then, we select
the answer with the highest cosine similarity and
check if the answer is in the ground truth set, which
contains all true answers. If the selected answer in-
deed belongs to the ground truth, then the question
is supposed to be answered correctly, otherwise
wrongly. At last, we count the accuracy of the
evaluation dataset and use it as the the evaluation
metrics.

4.2 Results

From Table 2 we can see that by fine-tuning with
the domain data, the accuracy of the QA system has
been significantly improved. It rises from 0.2664
to 0.4867 with an increasing of 82.7%. It proves
that the Sentence Transformer model has learned
a stronger language representation ability in the
insurance domain during the fine-tuning process.
It should also be noted that the experiment only
performed on very few models and tried no more
sets of hyperparameters. It is clear that with more
attempts on hyperparameter selection, the model
can achieve even better performance.

5 Conclusion

In this paper, we combined the Sentence Trans-
former and QA task. We fine-tuned a Sentence
Transformer Model and applied it to the QA task.
For that, we designed an evaluation method to in-
troduce Sentence Transformer model by sentence
matching and semantic similarity. When selecting
the model to be fine-tuned,we compared the per-
formance of different pre-trained Sentence Trans-
former models on solving QA tasks. We used the



accuracy as metrics. The results show that the Sen-
tence Transformer model can be better applied in
the QA tasks by fine-tuning.

Limited to the computational resources, we
failed to perform on more models and did a deeper
research on different models. Besides, we did not
study the effect of different hyperparameters on the
performance. This is what can be done in the future
work. Moreover, we could also directly fine-tune
a Sentence Transformer model based on a basic
pre-trained language model instead of fine-tuning
an existing pre-trained Sentence Transformer mode.
The comparison of the performance between the
both is also worth a research.
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